
Institute of Mathematics and Statistics
Bachelor degree in Computer Science

An Edge Computing Platform based
on Smart Heaters: Investigating Job
Allocation Policies, Describing and

Modeling Temperatures

Anderson Andrei DA SILVA
May 15th, 2020

Under the supervision of:
Prof. Alfredo GOLDMAN

Prof. Denis TRYSTRAM

Dr. Danilo CARASTAN

May 2020

Abstract

Fog/Edge computing infrastructures have as one of the most important chal-
lenges the allocation of computational jobs with data-sets dependencies in an effi-
ciently way. In this manuscript, we present the usage of a simulated Edge platform
and several metrics exemplifying how to develop and compare different scheduling
strategies. More precisely, we utilize an on-going project involving academics and
a high-tech company that aims at delivering a dedicated tool to evaluate schedul-
ing policies in Edge computing infrastructures. This tool enables the community to
simulate various policies and to easily customize researchers/engineers’ use-cases,
adding new features if needed.

The implementation is built upon the Batsim/SimGrid toolkit, which has been
designed to evaluate batch scheduling strategies in various distributed infrastruc-
tures. Although the complete validation of the simulation toolkit is still on-going,
we demonstrate its relevance by studying different scheduling strategies on top of
a simulated version of the Qarnot Computing platform, a production Edge infra-
structure based on smart heaters. We were able to develop and simulate the current
Qarnot’s job allocation strategies, to propose and evaluate different approaches for
different metrics.We also propose an analysis of their workloads and data sets de-
pendencies.

Looking on a second perspective, this manuscript also present a descriptive
analysis of the real Qarnot Platform logs, in order to better understand its behavior
and particularities. Going one step further on a temperature modeling, we built a
first attempt of categorization of the Qarnot smart heaters based on their behaviors.

Resumo

Plataformas de Fog/Edge Computing tem como um dos mais importantes de-
safios o escalonamento de trabalhos computacionais com dependências de conjun-
tos de dados de uma forma eficaz. Neste manuscrito, apresentamos a utilização
de uma plataforma Edge simulada e várias métricas exemplificando como desen-
volver e comparar diferentes estratégias de escalonamento. Mais precisamente,
utilizamos um simulador que tem como objetivo a avaliação de políticas de escalo-
namento em infra-estruturas de computação em plataformas Edge. Esta ferramenta
permite a comunidade simular várias políticas de escalonamento e customizá-las
facilmente, acrescentando novas funcionalidades se necessário.

A implementação é construída baseada nos simuladores Batsim/SimGrid, que
foram concebidos para avaliar estratégias de escalonamento em infra-estruturas
distribuídas. Embora a validação completa do simulador utilizador nesse trabalho,
fruto da utilização dos últimos dois citados, ainda esteja em curso, demonstramos a
sua relevância estudando diferentes estratégias de escalonamento baseadas em uma
versão simulada da plataforma da empresa Qarnot Computing, que possui uma
infra-estrutura baseada em aquecedores inteligentes. O desenvolvimento e simu-
lação das atuais estratégias de escalonamento da Qarnot, a proposta e avaliação de
diferentes abordagens para diferentes métricas e a análise das suas cargas de tra-
balho e das dependências dos conjuntos de dados serão apresentadas no decorrer
deste trabalho.

Numa segunda perspectiva, este manuscrito apresenta também uma análise
descritiva dos logs reais dos aquecedores inteligentes da plataforma Qarnot, de
forma a compreender melhor o seu comportamento e particularidades. Indo um
passo além em direção à uma modelagem das temperaturas desses aquecedores,
construímos uma primeira tentativa de categorização dos aquecedores inteligentes
da Qarnot com base nos suas distribuições de temperatura.

Acknowledgement

This work was supported by the ANR Greco project and by AUSPIN with the
International Exchange Program for undergraduate students from University of São
Paulo.

I would like to thank my advisors, Professor Denis Trystam for the opportunity,
his supporting and teachings, and Professor Alfredo Goldman for indicated me for
this Master Program. Also Dr. Yanik Ngoko for having proposed the subject of
this thesis, and Dr. Danilo Carastan for the co-supervision.

I would like to thank my family and friends for all the support, my fiancée
Andréia, my mom Rosimeri, my father Alex and my brother Leonardo.

Finally, I would like to thank anyone in my work group, colleagues and also
ones responsible for the administrative processes from USP and UGA.

ii

Contents

Abstract i

Resumo i

Acknowledgement ii

I Introduction, State of the Art and the Qarnot Computing Case
Study 1

1 Introduction 3
1.1 Edge Computing and the Internet of Things 3
1.2 A Simulated Edge Platform . 3
1.3 A Case Study . 4
1.4 The Data Analysis Challenge . 4
1.5 Main Contributions . 5
1.6 Outline . 6

2 State of the Art 7
2.1 Computing Platforms, Difference and Evolution 7
2.2 Resource Allocation Techniques and Metrics 10
2.3 Applicability, Load Balance, Energy Consumption Reduction and Other 11
2.4 Motivation, Companies Usage and Recent Statistics 12
2.5 Related Simulation Tools . 14
2.6 Future Remarks in Edge and Cloud Computing 15

3 Case study: the Qarnot Computing platform 17
3.1 Infrastructure Overview . 17
3.2 Platform Terminology . 18
3.3 Current Workflow . 19

II A Simulator Edge Platforms 21

1 A Dedicated Scheduling Simulator for Edge Platforms 23

1.1 Operational Components . 23
1.1.1 SimGrid . 23
1.1.2 Batsim and the Decision Process . 24

1.2 Extensions . 25
1.2.1 External Events Injector . 25
1.2.2 Storage Controller . 25

2 Simulated Platform 27
2.1 Qarnot to Batsim/SimGrid Abstractions . 27
2.2 Workflow . 27
2.3 Extracting Qarnot Traces . 29

2.3.1 Platform Description . 29
2.3.2 Workload Description . 30
2.3.3 Data Sets Description . 31
2.3.4 External Events Description . 31

3 Job Allocation 33
3.1 Scheduling Challenges . 33
3.2 Standard Schedulers . 34

3.2.1 QNode Scheduler . 34
3.2.2 QBox Scheduler . 34

3.3 QNode Schedulers Variants . 36
3.3.1 Locality Based Scheduler . 36
3.3.2 Full Replicate Scheduler . 36
3.3.3 3-Replicated and 10-Replicated Schedulers 37

4 Experiments, Results and Discussions 39
4.1 Job’s Processing Time . 39
4.2 Data Sets Dependencies . 40
4.3 Scheduling Metrics . 43

4.3.1 Data Transfers . 44
4.3.2 Bounded Slowdown . 45
4.3.3 Job’s Size Effect in the Measured Metrics 46

4.4 Analyses of Results . 47

5 Conclusion and Future Remarks 51
5.1 Concluding Remarks . 51

IIIThe Logs Data Analysis 53

1 Methodology and Data Analysis Process 55
1.1 Data Understanding . 55
1.2 Measurement Errors Recognition . 55
1.3 An analysis descriptive of the data . 55
1.4 Smart Heater Characterization . 55

1.4.1 One-Way Analyses of Variance . 56

iv

1.4.2 The requirements and relaxed metrics 57
1.4.3 The Kruskal-Wallis test . 57
1.4.4 Pairwise T-Test . 57
1.4.5 Categorization . 58
1.4.6 Homogeneity coefficient . 58
1.4.7 Merge groups into categories . 59
1.4.8 Merge groups from different categories 59

2 Results and Discussions 61
2.1 Data Analysis . 61

2.1.1 Data Understanding . 61
2.1.2 Measurement Errors Recognition . 61
2.1.3 Data Description . 62
2.1.4 The first range . 62
2.1.5 The second range . 65
2.1.6 The third range of temperatures . 68
2.1.7 Stability . 71

2.2 Categorization based on Distributions Analysis of Variances 74
2.2.1 One-Way Analyses of Variance . 75
2.2.2 The requirements and relaxed metrics 76

Homogeneity . 76
Normality . 77

2.2.3 Kruskal-Wallis rank sum test . 78
2.2.4 Pairwise T-Test . 78
2.2.5 Categorization . 79

Merge groups of the same type of temperatures 80
Merge groups from different types of temperature 81

3 Conclusions and Future Work 83

IVGeneral Conclusions 85

1 General Remarks and Acquired Knowledge 87
1.1 Simulated Platforms . 87
1.2 Edge Platforms . 87
1.3 Job Allocation . 88
1.4 Scheduling Metrics . 88
1.5 Data analysis . 88
1.6 The Qarnot Computing Use Case . 88
1.7 Tools and Programming Language . 89
1.8 Scientific Research . 90

Bibliography 91

Part I

Introduction, State of the Art and the
Qarnot Computing Case Study

1
Introduction

1.1 Edge Computing and the Internet of Things
The proliferation of Internet of Things (IoT) applications [8] and the advent of new tech-

nologies such as Mobile Edge computing [3] and Network Function Virtualization [25] (NFV)
have been accelerated the deployment of Cloud Computing like capabilities at the edge of
the Internet (i.e, places far from the servers locality). Cloud computing has been targeted of
centralized computation, where in general, the data is sent to the Cloud, processed there and
delivered to whom requested. However, nowadays, mobile devices have considerable computa-
tion power embedded and the usage of these devices has caused new situations, as the partial or
total data processing by themselves. So, a paradigm has been emerged in the aspect of data pro-
cessing, storage and transfer, which is the one to utilize the devices between the users and the
Cloud to perform the computations [9]. Referred to as the Fog [10] or the Edge computing [35]
paradigms, the main objective is to perform on demand computations close to the place where
the data are stored, produced and processed in order to mitigate data exchanges and to avoid too
high latency penalties [43]. The main differences from Fog/Edge Computing infrastructures to
the Cloud Computing ones are the heterogeneity regarding the network particularities (latency,
throughput, etc.) and multiple devices utilization for the same objective. Then, the connectivity
between resources is intermittent and the storage/computational resources can join or leave the
infrastructure at any time, for an unpredictable duration. At the light of these differences it
is necessary a tool to provide a structured Edge platform to allow studies. Among the open
questions, one of them is the computation and the data placement problems regarding the Edge
Computing scenario, i.e, where to transfer data sets according to their sources and schedule
computations to satisfy specific criteria. Although several works have been dealing with ques-
tions like that, [41, 11, 38, 40, 26, 13, 5], it is difficult to understand how each proposal behaves
in a different context and how they behave among different objectives (scalability, reactivity,
etc.). In addition, they have been designed for specific use cases that are evaluated either using
ad hoc simulators or in limited in vivo (i.e., real world) experiments.

1.2 A Simulated Edge Platform
Similarly to what has been proposed for the Cloud Computing paradigm [21], a dedicated

simulator toolkit has been developed, Batsim [14], on top of Simgrid [12]. The Simgrid [12]
is a scientific instrument to study the behavior of large scale distributed systems such as Grids,

Clouds, HPC (High Performance Computing) or P2P systems 1. It can be used to evaluate
heuristics and prototype applications. The Batsim is a simulator toolkit to analyze batch 2

scheduling strategies, and in particular, it also provides extensions as (i) an Injector, which is
an external module to inject any type of event that could occur during the simulation (e.g., a
machine became unavailable at a certain time) and (ii) a Storage Controller, to supervise all
transfers of data sets within the simulated platform.

In the Part II we will present the Simgrid/Batsim toolkit in more details, its extensions, an
Edge simulated platform built on top of them, and the performance analysis of the results from
this simulated platform.

1.3 A Case Study

Although the validation of these extensions and the integration of representative edge work-
loads is still ongoing, the first building blocks implemented enabled the study of an edge infra-
structure as complex as the Qarnot Computing platform [1]. The Qarnot Computing infrastruc-
ture is a production platform composed of 3,000 diskless machines distributed across several
locations in France and Europe. Each computing resource can be used remotely as traditional
Cloud computing capabilities or locally in order to satisfy data processing requirements of IoT
devices that have been deployed in the vicinity of the computing resource. Also with computing
units and mixed local/global job submissions with data sets dependencies, the Qarnot platform
is a good example of an Edge infrastructure. As far the simulation of the Qarnot platform was
possible utilizing Batsim/SimGrid, it also provided us the possibility to apply different schedul-
ing policies to the Qarnot’s jobs. In addition, we had access to some of the Qarnot Platform logs
and an extracotr. The Qarnot Platform logs allowed us to perform a descriptive analysis and a
categorization procedure, and the Qarnot’s Extractor allowed us to extract the real workloads
from the Qarnot’s platform, providing details of jobs, data sets, its dependencies and so on.

1.4 The Data Analysis Challenge

The novelty since the Qarnot foundation is that in addition to provide Cloud and HPC
jobs computation, they provide heat services for general environments as houses, apartments
or offices. Then, the platform receives two types of user requests: requests for computing and
requests for heating, from their machine which are presented as a Smart Heater.

In this chapter, we perform a first investigation of some of the Qarnot Computing’s Smart
Heater. This investigation is focused in the temperature logs from those machines in order to
better understand their temperature and heating mechanisms. We first perform a data cleaning
process in these logs to remove noisy and outlier data, then we perform an descriptive analysis
in order to have an overview, at first, and then to investigate some details. In the end, we create
a first model to analyse the temperature profile of the smart heaters to group the ones with
similar temperature characteristics.

1Stands for "Peer to Peer", in a P2P network, the "peers" are computer systems which are connected to each
other via the Internet

2Batch schedulers, or Resource and Jobs Management Systems (RJMS) are systems that manage resources in
large-scale computing centers, notably by scheduling and placing jobs.

4

One of the challenges of this approach is how can we better understand the heating behavior
of the smart heaters, since each of these machine are subject to distinct situations (i.e., different
processor types, offices with different sizes and thermal isolation efficiency, different heating
demands, etc.). This better understanding may enable more efficient predictions of the heating
characteristics, which in its turn may help to perform a better resource management.

For instance, to illustrate this interesting challenge, let us consider the Smart Heaters util-
ized at homes and apartments. Let us consider an apartment where a young student lives and
other where a senior person lives. Let us imagine that the student gets out home early of the
day and comes back late of afternoon. For that day his Smart Heater was turned off for almost
half day. Now, let us consider that the senior person hang outs just a little bit, and he stays
at home 70% of the day, then his Smart Heater will be tuned on more than the student one.
Adding another parameter, maybe the student targets his Smart Heater, in the average 20º C
almost all its useful time, and the senior one 24º C. Then, the analyses of both Smart Heater
will be completely different from their logs.

Those are very simple details that show us how challenging this context is, and it gets more
and more interesting as much as we get close to the reality. As another challenging example,
let us consider the interferences of the other appliances, the simple actions of open a window
or a door, and so on. A possible way to deal with this kind of heterogeneity of behaviors is
to characterize the Smart Heaters by their users. For that, we will look to the temperatures
distributions, searching for similarities. But a preliminary step is to understand all the data, to
search patterns or particularities that could exist.

In the Part III we present in details the Qarnot Computing’s logs, its particularities, a de-
scriptive analysis and a first attempt of categorization of the Qarnot’s smart heaters based on
their behaviors.

1.5 Main Contributions
Utilizing Batsim, its decision maker component and extensions (Storage Controller and

Injector), this work contributed with the development of many scheduling policies which were
compared in terms of performance when applied in an use case.

To compare the different scheduling policies from different points of view, this work con-
tributed with the design of experiments that allows with easy modification, execution and visu-
alization of all results provided by the platform. These analyses were conducted by (i) the
study of the job’s processing time distribution, (ii) the job’s dependencies of data sets, (iii) the
comparison among the workloads extracted and among the developed policies by several met-
rics. In addition, beyond the metrics provided by Batsim/Simgrid as waiting time, scheduling
time and slowdown this work contributed with the addition of a classical metric utilized in the
literature: the bounded slowdown.

Furthermore, this work contributed to the implementation of the remaining components to
achieve the full simulation of the Qarnot platform. In order to present details of its implement-
ation, we will depict the whole platform giving an overview of the Edge placement simulator.
After presenting the simulated platform built with Batsim/Simgrid, we will describe how the
Qarnot infrastructure has been instantiated on top of the simulator, how the injector was used to
simulate the Qarnot workload and, finally, how was developed and evaluated different schedul-
ing strategies for job placement and data movements. Hence, as we applied different policies
into an use case, researchers can use it to study whether scheduling algorithms that have been

proposed two decades ago in desktop computing platforms, volunteer computing and compu-
tational grids [7, 6, 15] reviewing to cope with edge specifics.

This work also contributed with a descriptive analysis of the Qarnot Computing’ logs,
presenting its whole methodology step by step, which can be used as base for another similar
studies. Moreover, it contributes with a first attempt of methodology to categorize distributions
of temperatures, based on an analysis of variances.

One can find the whole experimental structure to the Part II in the uga-master-thesis repos-
itory on GitHub 3, and to the Part III in the usp-tcc repository on GitLab 4. In both repositories
there are more figures and all scripts utilized for experiments. Also, it was produced a technical
5 reports which describes and summarize the whole implementation of the Edge Simulator and
the Qarnot use case.

1.6 Outline
The rest of this work is structured as follows. In the Part I: Chapter 2 presents related

works. Chapter 3 presents the Qarnot Computing use case. In the Part II: Chapter 1 gives an
overview of the Bastim/SimGrid toolkit and the extensions utilized. Chapter 2 describes how
we simulated the use case. Chapter 3 presents concepts about job allocation and metrics to
evaluate performance in the context of this thesis. Also depicts the algorithms developed based
on the use case and its differences. Chapter 4 discusses analyses of the different scheduling
strategies for the Qarnot platform. We also show investigations regarding jobs processing
time and the data sets dependencies based on the simulation and the extracted logs. Finally,
Chapter 5 concludes and and remarks future steps for the second part. In the Part III: Chapter 1
presents the methodology of the descriptive analysis and the smart heaters’ categorizations.
Section 2.1.3 presents the experiments results and discussions. And Chapter 3 concludes and
remarks future steps for the third part. Finally, Chapter 1 presents general discussions and the
acquires knowledge during this work.

3https://github.com/andersonandrei/uga-master-thesis
4https://gitlab.com/andersonandrei/usp-tcc
5https://hal.inria.fr/hal-02153203v4

6

2
State of the Art

This works related to several terms and concepts into the development of an edge simulated
platform focused in the scheduling of HPC jobs. Hence we studied the state of the art of these
concepts follow as Cluster, Grid and Cloud Computing, as well as IoT and the usage of Mobile
devices. Regarding the allocation of HPC jobs, we will present some studies about this kind
of job and its allocation process from different possible goals and views. Running these jobs
in platforms as Cluster, Grid, Edge or Cloud, is visible the necessity to use metrics to evaluate
the performance for such processes and allocation techniques. So, we will present some of
these techniques as load balance of HPC jobs and the usage of virtualization and containers
to manage this kind of platform. In addition, as the energy consumption is a very important
problem related with all of these concepts, we will present some related works that handle it.
Next we will present some recent statistics from scientific studies and others from the point
of view of companies, where both emphasizes the emergency and the requirement of Edge
Computing. Finally, we show show some related simulated platforms providing comparisons
with Batsim, which is the simulator that we utilized and improved during this work.

2.1 Computing Platforms, Difference and Evolution
In a survey, Huang et.al [19] define the evolution of computing platforms into three phases

that were followed over the years. The mode of the computing has been changed along the
time, and Cloud Computing is a very important on in the current state. The following defines
those evolution processes three steps:

1. The original mode which for processing, gathered all the tasks to large-scale processors.

2. The distributed tasks processing mode based on the Internet.

3. The Cloud Computing mode for immediate processing.

Hameed Hussain et.al [20], defined as HPC categories: Cluster, Grid and Cloud Computing
platforms, which are conceptually similar. However, each of these categories have distinct
features, and we emphasize the main distinctions as follows:

• On Clusters, the goal is to design an efficient computing platform that uses a group of
computer resources integrated through hardware, networks, and software to improve the
performance and availability of a single computer resource, such that:

– A modern one is made up of a set of commodity computers that are usually restric-
ted to a single switch or group of interconnected switches within a single virtual
local-area network (VLAN). In addition to executing compute-intensive applica-
tions, cluster systems are also used for replicated storage and backup servers that
provide essential fault tolerance and reliability for critical parallel applications.

– Allows extensions by incorporating load balancing, parallel processing, multi-level
system management, and scalability methodologies.

• On Grid, the computing concept is based on using the Internet as a medium for the wide
spread availability of powerful computing resources as low-cost commodity components.
Computational grid can be thought as a distributed system of logically coupled local
clusters with non-interactive workloads that involve a large number of files. Emphasizing
that grids tend to be more loosely coupled, heterogeneous, and geographically dispersed,
makes grid different from conventional HPC systems, such as cluster.

• On Cloud is found a recent model for Information Technology (IT) services based on the
Internet, that typically involves provision of dynamically scalable and often virtualized
resources over-the-Internet. Typical Cloud Computing providers deliver common busi-
ness applications on line that are accessed through web service, and the data and software
are stored on the servers. In addition, the Cloud Computing systems are difficult to model
with resource contention (competing access to shared resources). Many factors, such as
the number of machines, types of applications, and overall workload characteristics, can
vary widely and affect the performance of the system.

Focusing on Grid Computing, Qureshi et.al [31], present it as a platform for virtual organ-
izations and computing environments that was introduced in 1990s, which:

• Provides low-cost intelligent methodologies for sharing data and resources such as com-
puters, software applications, sensors, storage space, and network bandwidth due to the
necessity of reliable, pervasive, and high computing power.

• Depending on factors as operating system, amount of memory, CPU speed, number of
resources, architecture types and so on, Grids can be generally classified as homogeneous
or heterogeneous.

Several surveys present the definition of Cloud Computing as composed of three kind of
services [29, 20, 31]:

• Cloud Software as a Service (SaaS), which cloud providers offer software running on a
cloud infrastructure.

• Cloud Platform as a Service (PaaS), which the cloud platform offers an environment for
development and deployment of applications.

• Cloud Infrastructure as a Service (IaaS), which cloud providers manage computing re-
sources such as storing and processing capability.

In addition, different deployment models have been adopted based on their variation in
physical location, distribution and services, classifying Clouds among:

8

• Private, which is restricted for management and usage of predefined users.

• Public or Hosted, which is open to the public, generally usually charged on a pay-per-use.

• Community, which is available to specific group of people or community in order to share
resources and services.

• Hybrid, which is a combination of the other three types.

Then, the applicability of Cloud Computing has been studied. Luiz Bittencourt et.al [9]
depict how the expansion of Internet of Things (IoT), is affecting the way to use Cloud Com-
puting, storing, processing and producing information and knowledge as a result. It also discuss
how in one hand, the wide adoption of Cloud Computing is a consequence of a fast time-to-
market for many types of applications due to the paradigm’s flexibility and reduced or null
initial capital expenditures, on the other hand, this same wide adoption has exposed some lim-
itations of the paradigm in fulfilling all requirements of some classes of applications, such as
real-time low latency, and mobile applications. Due to the fact that centralized cloud data cen-
ters are often physically and/or logically distant from the cloud client, the communication and
data transfers traverses multiple hops, which introduces delays and consumes network band-
width of edge and core networks. As a combination of the ability of run small, localized
applications at the edge with the high-capacity from the cloud, it presents the fog computing
as emerged paradigm that can support heterogeneous requirements of small and large applic-
ations through multiple layers of a computational infrastructure that combines resources from
the edge of the network as well as from the cloud.

In addition, Mao et al. [22] present how Mobile devices tend to grow in terms of usabil-
ity and processing of data, implicating the decentralization from the Cloud’s presence. This
survey says that the last decade has seen Cloud Computing emerging as a recent paradigm of
computing such that a vision is the centralization of computing, storage and network manage-
ment in the Clouds, referring to data centers, backbone IP networks and cellular core networks.
But, in recent years, it has been changed due to the Clouds being increasingly moving to-
wards the network edges. Mao et al. [22] present the estimation that tens of billions of Edge
devices will be deployed in the near future, and their processor speeds are growing exponen-
tially, following Moore’s Law. Harvesting the vast amount of the idle computation power and
storage space distributed at the network edges can yield sufficient capacities for performing
computation-intensive and latency-critical tasks at mobile devices. The same survey presents
the Mobile Edge Computing (MEC) as a computation provider at mobile devices considering
the proximate access, that is widely agreed to be a key technology for realizing various visions
for next-generation Internet, such as Tactile Internet (with millisecond-scale reaction time) and
Internet of Things (IoT). Also, Y. Mao et.al say :

• It shows implications from the different techniques of implementation of MEC, which are
network functions virtualization (NFV), information-centric networks (ICN) and software-
defined networks (SDN).

• It presents the Fog Computing as a propose of Cisco as a generalized form of MEC
where the definition of edge devices gets broader, Fog Computing and Networking are
overlapping the terminologies with MEC.

2.2 Resource Allocation Techniques and Metrics
Some of the works referenced in the previous section also present the challenges for re-

source allocation from the Cloud, Grid and Edge Computing. Hence, in this section we present
some solutions and techniques.

Huang et al. [19] affirm that to make appropriate decisions when allocating hardware re-
sources to the tasks and dispatching the computing tasks to resource pool has become the main
issue in Cloud Computing. As Cloud Computing has its own features, the resource allocation
policies and scheduling algorithms for the other computing technologies are unable to work
under these conditions. For that reason there is not an uniform standard for job scheduling in
cloud and then it is an important component in this context.

S. M. Parikh [29] points that the management of flexible resources allocation is a problem
emerged in this context, due to heterogeneity in hardware capabilities, workload estimation
and a variety of services, also as the the maximization of the profit for cloud providers and the
minimization of cost for cloud consumers.

According to Hussain et al. [20] the resource management mechanism determines the effi-
ciency of the used resources and guarantees the Quality of Service (QoS) provided to the users.
Therefore, the resource allocation mechanisms are considered a central theme in HPC. QoS
resource management and scheduling algorithms are capable of optimally assigning resources
in ideal situation or near-optimally assigning resources in actual situation, taking into account
the task characteristics and QoS requirements. In addition it presents common attributes among
the HPC categories, such as size, network type, and coupling.

In Grid platforms as Qureshi, Muhammad Bilal et.al [31] present, a Grid resource can be
defined as an entity that needs to carry out an operation by an application such that each applic-
ation in Grid environment competes for various resources according to application needs. This
way resource allocation, mechanisms play an important role in allocating the most appropriate
resources to applications. The mechanisms perform the allocation of tasks to the resources in
order to ensure QoS to the application according to the user requirements. Ressource allocation
mechanisms provide two basic Grid services:

• Resource monitoring, which regularly monitors resource performance, capability, usage
and future reservations, including processors, disks, memories,and channel bandwidths.

• Resource scheduling, which retrieves the information from a) and decides on the alloc-
ation of the application to the underlying resources. There are several goals to conduct
the RA process as reduce makespan, power minimization and energy efficiency improve-
ment, reduction of task completion time or the amount of data transfer, among others.

Feitelson, Dror G. [16] says that the root cause for convergence problems is variability in the
workloads. Therefore, it characterizes the variability in the runtime and arrivals of workloads
observed on different systems, and in models based on them. The first metric dealt with is the
response time. It defines “response time” to mean the total wall clock time from the instant
at which the job is submitted to the system, until it finishes its run. This can be divided into
two components: the running time, denoted by Tr, during which the job is actually running
in parallel on multiple processing nodes, and the waiting time, denoted by Tw , in which it is
waiting to be scheduled or for some event such as I/O. The waiting time itself can also be used
as a metric, based on the assumption that Tr does not depend on the scheduling. Obviously,

10

a lower bound on the response time of a given job is its running time. As the runtime of jobs
have a very large variance, so must the response time.

It was therefore suggested that a better metric may be the slowdown (also called “expansion
factor” or stretch), which is the response time normalized by the running time: slowdown =
(Tw+ Tr)/Tr. Thus if a job takes twice as long to run due to system load, it suffers from
a slowdown factor of 2, etc. This is expected to reduce the extreme values associated with
very long jobs, because even if a week-long job is delayed for a whole year the slowdown
is only a factor of 50. Moreover, slowdown is widely perceived as better matching user ex-
pectations that a job’s response time will be proportional to its running time. It affirms that
the slowdown metric is that it over-emphasizes the importance of very short jobs. For ex-
ample, a job taking 100 ms that is delayed for 10 minutes suffers from a slowdown of 6000,
whereas a 10-second job delayed by the same 10 minutes has a slowdown of only 60. To
avoid such effects, Feitelson et al. have suggested the “bounded-slowdown” metric. The
difference is that for short jobs, this measures the slowdown relative to some “interactive
threshold”, rather than relative to the actual runtime. Denoting this threshold by , the definition
is bounded− slowdown = max{(Tw+Tr)/max{Tr,},1}. In addition, Aida, Kento [4] deals
with the investigation of the effect of the job size on the scheduling performances, it charac-
terizes and performs experiments showing how does the processor utilization and the bounded
slowdown are affected in that context. In details, the processor utilization is the percentage that
processors are busy over entire simulation. The slowdown ratio (SR), shows normalized data
for mean response time. For instance, Aida, Kento [4] supposes that 10000 jobs were executed
in an experiment. The mean response time of these 10000 jobs was 5 hours, and their mean
execution time on processors was 2 hours. Then, the slowdown ratio is 2.5.

2.3 Applicability, Load Balance, Energy Consumption
Reduction and Other

Different techniques for several goals have been applied in the context of Cloud and Edge
Computing. The usage of containers is one technique presented by C. Pahl and B. Lee [28] that
introduces the Cloud Computing as a centralized, large-scale data centers to a more distrib-
uted multi-cloud setting comprised of a network of larger and smaller virtualized infrastructure
runtime nodes, also referred to as edge clouds, Edge Computing or fog computing. It is fo-
cused on the virtualization as a form to reach the network and allow Internet-of Things (IoT)
infrastructures to be integrated. As a challenge resulting from distribution, it affirms the neces-
sity of more lightweight solutions than the current virtual machine (VM)-based virtualization
technology. Virtual machines (VMs) have been at the core of the compute infrastructure layer
providing virtualized operating systems. It investigates containers, which are a lightweight
virtualization concept, i.e., less resource and time consuming. VMs and containers are both
virtualization techniques, but solve different problems. Containers are a solution for more in-
teroperable application packaging in the cloud and should therefore address the PaaS concerns.

Load balancing algorithm is another example, M. Randles et.al [32] identify it as major
concern to allow Cloud Computing to scale up to increasing demands. It presents three po-
tentially viable methods for load balancing in large scale Cloud systems. The first one is a
nature-inspired algorithm may be used for self-organization, achieving global load balancing
via local server actions. The second one by a self-organization that can be engineered based on

random sampling of the system domain, giving a balanced load across all system nodes. The
third one, by a restructure to optimize job assignment at the servers.

Since the execution of HPC jobs produce a huge energy consumption, one other target that
has been studied is how to reduce this energy consumption. Jie Meng et.al [24] presents that
has been reported the worldwide data center electricity consumption increased by 56% from
2005 to 2010, which accounted for 1.3% of the total electricity use. A recent review shows that
for every dollar spent on power of data center computing equipments, another dollar is spent on
data center cooling infrastructures, which translates to an energy cost reaching up to millions
of dollars and cooling costs reaching close to half of the overall energy cost. Thus, it manages
simulations in order to study cooling and energy efficiency in this context.

The Batsim/ SimGrid toolkit also includes an energy plugin to keep track of temperature
for similar reasons [33, 18], which will be discussed a lit bit more in next sections.

In addition, the Qarnot Computing proposal is direct related with this context, which will
be discussed in the next sections, but could be find detailed information in [27].

2.4 Motivation, Companies Usage and Recent
Statistics

The work [34] presents in details how Cloud Computing has been used and how it has been
requiring Edge Computing as a recent paradigm. It takes into account the aspect and impact
commercial from these computing platforms providing a very good panoramic view of the con-
text, it affirms that nascent technologies and applications for mobile computing and the Internet
of Things (IoT) are driving computing toward dispersion. For them Edge Computing is a re-
cent paradigm in which substantial computing and storage resources—variability referred to as
cloudlets, micro data centers, or fog nodes are placed at the Internet’s edge in close proximity
to mobile devices or sensors. It shows that industry investment and research interest in Edge
Computing have grown dramatically in recent years. Nokia and IBM jointly introduced the Ra-
dio Applications Cloud Server (RACS), an Edge Computing platform for 4G/LTE networks, in
early 2013. It affirms that the following year, a mobile Edge Computing standardization effort
began under the auspices of the European Telecommunications Standards Institute (ETSI). The
Open Edge Computing initiative (OEC; 1) was launched in June 2015 by Vodafone, Intel, and
Huawei in partnership with Carnegie Mellon University (CMU) and expanded a year later to
include Verizon, Deutsche Telekom, T-Mobile, Nokia, and Crown Castle. This collaboration
includes creation of a Living Edge Lab to gain hands-on experience with a live deployment of
proof-of-concept cloudlet-based applications. Organized by the telecommunications industry,
the first Mobile Edge Computing Congress (tmt.knect365.com/mobile-edge-computing) con-
vened in London in September 2015 and again in Munich a year later. The Open Fog Consor-
tium 2 was created by Cisco, Microsoft, Intel, Dell, and ARM in partnership with Princeton
University in November 2015, and has since expanded to include many other companies. The
First IEEE/ ACM Symposium on Edge Computing (conferences.computer.org/SEC) was held
in October 2016 in Washington, DC.

It is possible to find examples of software as a service (SaaS) instances, such as Google
Apps, Twitter, Facebook, and Flickr, that have been widely used in our daily life [36] [37].

1openedgecomputing.org
2www.openfogconsortium.org

12

Moreover, scalable infrastructures as well as processing engines developed to support cloud
service are also significantly influencing the way of running businesses such as, Google File
System, MapReduce, Apache Hadoop, Apache Spark, and so on. In addition, it affirms with
recent statistics that with IoT, we will arrive in the post-cloud era, where there will be a large
quality of data generated by things that are immersed in our daily life, and a lot of applications
will also be deployed at the edge to consume these data. By 2019, data produced by people,
machines, and things will reach 500 zettabytes, as estimated by Cisco Global Cloud Index,
however, the global data center IP traffic will only reach 10.4 zettabytes by that time. By 2019,
45% of IoT-created data will be stored, processed, analyzed, and acted upon close to, or at
the edge of, the network. Finally, they raise the following issues: Why Do We Need Edge
Computing ?

• Push from Cloud services: putting all the computing tasks on the cloud has been proved
to be an efficient way for data processing since the computing power on the cloud out-
classes the capability of the things at the edge. However, compared to the fast developing
data processing speed, the bandwidth of the network has come to a standstill. With the
growing quantity of data generated at the edge, speed of data transportation is becoming
the bottleneck for the cloud-based computing paradigm. It examples, about 5 Gigabyte
data will be generated by a Boeing 787 every second, but the bandwidth between the air-
plane and either satellite or base station on the ground is not large enough for data trans-
mission. It considers an autonomous vehicle as another example, one Gigabyte data will
be generated by the car every second and it requires real-time processing for the vehicle
to make correct decisions. If all the data needs to be sent to the cloud for processing, the
response time would be too long. Not to mention that current network bandwidth and
reliability would be challenged for its capability of supporting a large number of vehicles
in one area. In this case, the data needs to be processed at the edge for shorter response
time.

• Pull From IoT many kinds of electrical devices will become part of IoT, and they will
play the role of data producers as well as consumers, such as air quality sensors, LED
bars, streetlights and even an Internet-connected microwave oven. It is safe to infer that
the number of things at the edge of the network will develop to more than billions in
a few years. Thus, raw data produced by them will be enormous, making conventional
cloud computing not efficient enough to handle all these data. This means most of the
data produced by IoT will never be transmitted to the cloud, instead it will be consumed
at the edge of the network.

• Change from data consumer to producer: in the Cloud Computing paradigm, the end
devices at the edge usually play as data consumer, for example, watching a YouTube
video on a your smart phone. However, people are also producing data nowadays from
their mobile devices. The change from data consumer to data producer/consumer requires
more function placement at the edge. For example, it is very normal that people today
take photos or do video recording then share the data through a cloud service such as
YouTube, Facebook, Twitter, or Instagram. Moreover, every single minute, YouTube
users upload 72 h of new video content; Facebook users share nearly 2.5 million pieces
of content; Twitter users tweet nearly 300 000 times; Instagram users post nearly 220 000
new photos. However, the image or video clip could be fairly large and it would occupy

a lot of bandwidth for uploading. In this case, the video clip should be demised and
adjusted to suitable resolution at the edge before uploading to cloud. Another example
would be wearable health devices. Since the physical data collected by the things at the
edge of the network is usually private, processing the data at the edge could protect user
privacy better than uploading raw data to cloud.

Also, what are the benefits of Edge Computing?

• In Edge Computing we want to put the computing at the proximity of data sources. This
have several benefits compared to traditional cloud-based computing paradigm. Here
we use several early results from the community to demonstrate the potential benefits.
Researchers built a proof-of-concept platform to run face recognition application in, and
the response time is reduced from 900 to 169 ms by moving computation from cloud
to the edge. Moreover, the energy consumption could also be reduced by 30%–40%
by cloudlet offloading. Clone cloud in combine partitioning, migration with merging,
and on-demand instantiation of partitioning between mobile and the cloud, and their
prototype could reduce 20× running time and energy for tested applications.

2.5 Related Simulation Tools

We described in this work a novel simulation tool for easily designing and testing schedul-
ing strategies on Edge Computing platforms, built on top of Batsim. It was motivated by the
huge effort of building a new simulator using adequate tools for modeling the processing and
memory units and the network topology.

We discussed briefly below the main competitors and argument for this simulator. Some
simulators have constraints that would prevent us to correctly simulate a platform such as the
Qarnot’s one. For example, EmuFog[23] does not support hierarchical fog infrastructures,
whereas Qarnot infrastructure is inherently hierarchical. Other simulators such as iFogSim[17],
EdgeCloudSim[39] and IOTsim[42], are simulation frameworks that enable to simulate fog
computing infrastructures and execute simulated applications on top of them. The two closest
simulators to the presented one is a) the CloudSim, widely used to validate algorithms and
applications in different scientific publications, however is based on a top-down viewpoint of
cloud environments. And b) this one is related to other very close work on the literature [24]
where are implemented evaluation models and allocation optimization methods in SST, the
Structural Simulation Toolkit. The SST is an architectural simulation framework designed to
assist in the design, evaluation, and optimization of HPC architectures and applications. It is
developed by Sandia National Laboratories to evaluate the performance of computer systems
ranging from small-scale single-chip processors to large-scale parallel computing architectures.
It was used for evaluating an optimization algorithm managing real-world parallel workloads,
as well as the implementations of job scheduler and allocation algorithms in SST.

The Batsim is built on top of SimGrid, which has been validated in many publications [2]
and allows finer-grained simulations, as explained in Section 1.1.

14

2.6 Future Remarks in Edge and Cloud Computing
According to Shi et al. [36], [37] there will be 50 billion objects connected to the Inter-

net by 2020, as predicted by Cisco Internet Business Solutions Group. Some IoT applications
might require very short response time, some might involve private data, and some might pro-
duce a large quantity of data which could be a heavy load for networks. They conclude that
Cloud computing is not efficient enough to support these applications due to the growth of data
production at the edge of the network. Therefore, it would be more efficient to also process the
data at the edge of the network, close to where it is generated. And remark that previous work
such as micro data center, cloudlet, and fog computing have been introduced to the community
because cloud computing is not always efficient for data processing when the data is produced
at the edge of the network.

Finally, several possibilities of next steps that could be taken in the future of Edge and
Cloud Computing are discussed by Bittencourt et al [9]:

1. Fog and 5G for IoT: while the first 5G deployments are expected in the next couple
of years, several challenges remain in how these deployments will support IoT services
integrated with cloud and fog computing.

2. Serverless Computing: microservices management throughout the IoT-Fog-Cloud hier-
archy presents challenges associated to the movement of services among IoT, fog, and
cloud devices. The automatic adaptation of the execution of microservices must consider
deployment location and context, but should also not neglect resource constraints that
may exist at each level of the fog.

3. Resource Allocation and Optimization: The composition of devices in the IoT-Fog-Cloud
continuum brings novelties as the heterogeneity of devices and applications reach unpre-
cedented levels, then optimization in resource allocation becomes more challenging.

4. Energy Consumption: The proliferation of IoT devices and the ever increasing rate of
data produced are increasing pressures on energy consumption. One should expect that
such pressures will have to be addressed at both hardware and software levels as well as
their interplay.

5. Data Management and Locality: There are several open issues related to data manage-
ment and locality in IoT-Fog-Cloud computing systems. First and foremost, these sys-
tems are typically composed of a broad set of heterogeneous communication technolo-
gies such as cellular, wireless, wired, and radio frequency. This means that the systems
orchestrator has to be able to handle distinct underlying networks as well as different
addressing schemes.

6. Applying Federation Concepts to Fog Computing and IoT: Federations will be widely
used in many different application domains. The outstanding challenge here is how can
federation capabilities be best applied in fog and IoT environments? The easiest answer
is to simplify the deployment and governance models to be used.

7. Trust Models to Support Federation in Fog and IoT Environments: Identity and trust
are the cornerstones of federation management. While a number of methods exist for
establishing identity and trust, the only feasible methods are based on cryptographic

methods. An inherent property of IoT environments, though, is that the closer to the
edge one gets, the more resource-constrained the devices will become.

8. Orchestration in Fog for IoT: Despite recent developments in the area of fog orchestration
for the Internet of Things, there are still several open issues that need to be addressed.
First and foremost, privacy must be tackled in accordance to the European Union General
Data Protection Regulation as well as similar regulations being enforced worldwide.

9. Business and Service Models: While cloud computing has been offering a variety of busi-
ness and service models through the years, it is not clear yet if fog computing can simply
incorporate the cloud models or if new business or service models would be feasible.

10. Mobility: Efficiently allocating resources for mobile users is a challenge in fog comput-
ing. Users and devices mobility patterns are an important aspect to provide proper service
when offloading to the fog occurs. Dealing with a large set of mobile users with diverse
applications and requirements is a highly dynamic scenario, which makes resource man-
agement challenging.

11. Urban Computing: Although several research efforts related to urban computing have
been performed recently, it is possible to find open issues and opportunities for studying
cities and societies using location-based social networks (LBSN) data.

12. The Industrial Internet of Things: Designing software that exploits the Industrial In-
ternet of Things constitutes a “system of systems” challenge. Taking into account the
whole Iot-Fog-Cloud continuum, addressing the complexity of this challenge will re-
quire frameworks that enable interoperability but are also able to cope with varying and
possibly conflicting user and system requirements.

16

3
Case study: the Qarnot Computing platform

We present in this section the platform of the Qarnot Computing company, which serves as
our case study.

3.1 Infrastructure Overview

Qarnot Computing has been incorporated in 2010 to develop a disruptive solution able to
turn IT heat waste into a viable heating solution for buildings. The infrastructure is distributed
in housing buildings, offices and warehouses across several geographical areas in France and
Europe, in each situation directing the heat waste produced by computations to heat air and
water for the building. As of writing this manuscript, the whole platform is composed of about
1,000 computing devices(QRads, the Qarnot Radiators, or Smart heaters) hosting about 3,000
diskless machines. The diskless machines have access to some storage area present on the
deployment site (QBox), shared as NFS (Network File Systems) through a LAN (Local Area
Network). From now one, we will use machines, computing devices, Smart Heaters and QRads
as synonymous.

In a typical configuration a computing machine has a 1 Gbps uplink to a common switch,
which then has up to 40 Gbps uplink to the QBox. The latency between a computing machine
and its storage area is of the order of 1 ms. The various deployment sites are connected to the
Internet using either a public or enterprise ISP, with characteristics varying from 100 Mbps to 1
Gbps symmetric bandwidth to the Internet, and about 10 ms latency to French data centers used
by Qarnot to host control and monitoring infrastructure, central storage services, and gateways
to its distributed infrastructure.

Qarnot deploys high performance computing hardware and storage capacity to buildings,
which makes it a fitting infrastructure to locally gather and process data that is generated at
the edge of the network (for instance on smart buildings). One objective of the edge simulator
is to evaluate evolution’s of the Qarnot architecture to handle such local use-cases. It will
allow investigating the edge infrastructure dimensioning as well as the optimization of the
local data and processes placement with regard to the global ones. This can reduce global
data movements, enable buildings to be autonomous in terms of IT and to handle Internet
connectivity loss gracefully.

Figure 3.1 – Scheme of the Qarnot platform.

3.2 Platform Terminology

The job and resource manager of the Qarnot platform, named Q.ware, is based on a hier-
archy of 3 levels as shown in Figure 3.1: the QNode-, the QBox- and the QRad-level.

The QNode is the root node, a “global” server that takes placement decisions for the whole
platform. It can be viewed as a load balancer for the platform. Connected to this QNode there
are the QBoxes, which are “local” servers in smart buildings that take scheduling decisions
locally on their own computing nodes. Each QBox is in charge of a set of computing nodes,
the QRads, which are composed of one or several motherboards, denoted by QMobos.

Moreover, a centralized storage server, the CEPH, is present at the QNode-level while each
QBox has its own local storage disk. From a physical point of view, the QNode and CEPH are
on the cloud while QBoxes are distributed over smart buildings of several cities. QRads among
a building are distributed in different rooms.

The Qarnot platform receives two types of user requests: requests for computing and re-
quests for heating. The computing requests describe the workload to be executed on the plat-
form. They are made by users that first upload input data needed to execute their jobs (named
Docker 1 image either to the centralized server or the Docker Hub. Then, they submit the
QTasks to the QNode. A QTask can be decomposed in a bag of several instances that share
the same Docker image and data dependencies, but with different command arguments. This
can be used for example to process each frame of a given movie, with one frame or a range of
frames per instance.

The heating requests are made by inhabitants that can turn on and off the smart heaters in
their homes, or set a target temperature for rooms to be reached as soon as possible. Since the
computing units in a smart heater are unavailable when cooling is necessary, and are available
otherwise, such changes increase the heterogeneity challenges of an edge infrastructure: the
machines does not simply appear or disappear but also varies according to the heating needs.

1Docker is a platform for developers and sysadmins to build, run, and share applications with containers. The
use of containers to deploy applications is called containerization. Containers are not new, but their use for easily
deploying applications is. See https://docs.docker.com/get-started/.

18

3.3 Current Workflow
Whenever QTasks are submitted on the platform all the data dependencies should be up-

loaded to the CEPH. To be executed, these QTasks have to be scheduled to the QBoxes and
then scheduled onto QMobos through two scheduling steps.

The first step takes place at the QNode-level. The QNode greedily dispatches as many
instances of the QTasks ordered by priority on QBoxes, depending on the number of QMobos
available for computation on each QBox.

The second step takes place at the QBox-level. Upon receiving instances of a QTask, the
QBox will select and reserve a QMobo for each instance and fetch from the CEPH each missing
data dependency before starting instances.

Notice that, at all times, a FrequencyRegulator runs on each QRad to ensure that the ambient
air is close to the target temperature set by the inhabitant, by regulating the frequencies of the
QMobos and completely turning off a QRad if it is too warm. Moreover, whenever there is no
computation performed on the QMobos while heating is required, some “dummy” compute-
intensive programs are executed to keep the QRad warm. Figure 3.2 summarizes the execution
flow of a QTask within the Qarnot platform.

As mentioned, QTasks to be executed on this platform are submitted to the QNode and
all the data dependencies are uploaded to the CEPH (steps 01 and 02). To be executed, these
QTasks, along with their data dependencies, have to be sent to the QBoxes and then scheduled
onto QMobos. Every 30 seconds, the QBoxes send information about the state of their disk,
QRads and QMobos to the QNode (steps 03 through 05), in particular, the number of QMobos
available for computation and the free storage space are reported.

A first scheduling process is made at the QNode-level to dispatch instances of the QTasks
to the QBoxes (steps 06 and 07). The QNode tries to dispatch, for each QTask taken by priority,
as many instances as possible onto QBoxes, with respect to the number of available QMobos
and storage space left on the QBox disks.

Upon receiving instances of a QTask, the QBox will reserve for each instance a QMobo
from the warmest QRad for the case of low priority QTask, and a QMobo from the coolest
QRad in the case of high priority (step 08). This distinction is made to keep more QMobos
available in case high priority QTasks are sent to the QBox in the near future. The QBox then
checks whether the Docker image and other data dependencies for these instances are on disk
and fetches any missing data from the CEPH (steps 09 and 10).

Once all data transfers are completed for this QTask, the reserved QMobos are rebooted
and the instances are started (steps 11 through 14). When the instance completes, its output is
uploaded to the CEPH and the QNode is notified of the instance completion (steps 15 through
17). Finally, the queue of QTasks is updated and if an instance of the same QTask can be directly
dispatched, it is sent to the QBox and the execution starts immediately, without rebooting the
QMobo (steps 18 and 19).

Figure 3.2 – Execution flow of a QTask on the Qarnot platform.

20

Part II

A Simulator Edge Platforms

1
A Dedicated Scheduling Simulator for Edge

Platforms

We chose to Batsim/SimGrid instead of available fog/edge simulators [17, 39, 42] for sev-
eral reasons:

• Batsim has been specially designed to test and compare batch scheduling policies in
distributed infrastructures. In other words, the design of Batsim enforces researchers
to use the same abstractions and thus, favor straightforward comparisons of different
strategies, even if they have been implemented by different research groups.

• The accuracy of the internal models (computation and network) of SimGrid has been
already validated.

• Batsim provides a Python API that makes the development of a scheduling strategy
simple.

Released in 2017, Batsim [14] delivers a high-level API to facilitate the development of
batch scheduling algorithms that are simulated on top of SimGrid [12], the well-proven simu-
lator toolkit for distributed infrastructures. Thus, it is possible to rely on high-level tools that
have been proposed and already validated. Some parts have been customized to reflect the edge
specifics, especially the decision processes, which is the main goal of this work, and the others
(Storage Controller, Injector and Qarnot Extractor) have been developed by the workgroup at
the same time. In this chapter is described all of them.

1.1 Operational Components
In this section we discuss the role of the different components, namely SimGrid, Batsim,

the decision process and their interactions.

1.1.1 SimGrid

SimGrid [12] is a generic simulator framework that enables simulation of distributed sys-
tems. Performing simulations with SimGrid requires (i) writing a platform specification, (ii)
formatting workload input data, and (iii) interfacing the program to evaluate.

Figure 1.1 – Batsim and decisions maker interaction.

The choice of using SimGrid as the main engine for Batsim is mainly due to its relevance in
terms of performance, as well as its validity that has been backed-up by many publications [2].
Moreover, it enables the description of complex infrastructures, such as hierarchical ones, that
are composed of many interconnected devices with possibly highly heterogeneous profiles.
Finally, the injection of external events on demand, such as machines connecting or discon-
necting on the network, has allowed the easy simulation of complex systems such as fog/edge
infrastructures.

1.1.2 Batsim and the Decision Process

Batsim [14] is an infrastructure simulator for jobs and I/O scheduling, built on top of Sim-
Grid, to help the design and analysis of batch schedulers. Batch schedulers, or Resource and
Jobs Management Systems, are systems in charge of managing resources in large-scale com-
puting centers, notably by scheduling and placing jobs. Batsim allows researchers to simulate
the behavior of a computational platform on which a workload is executed according to the
rules of a decision process. It uses a simple event-based communication interface. An event
here represents some action (i.e, a job submission/conclusion, an user request, etc.). As soon as
an event occurs, Batsim stops the simulation and reports what happened to the decision process.

The decision process embeds the actual scheduling code to be evaluated. In other words, in
order to simulate a given scheduling algorithm, an experimenter has to implement this decision
process. Comparing different algorithms consists in switching between different decision pro-
cesses, which is straightforward.

Figure 1.1 illustrates the interaction between Batsim and the decision process. The de-
cisions process reacts to the simulation events received from Batsim, takes decisions according
to a given scheduling algorithm, and drives the simulated platform by sending back its decisions
to Batsim. In this work, we used Batsim’s Python API to implement the decision process, which
provides functions to ease the communication with Batsim.

24

More details on Batsim and SimGrid mechanisms can be found on Chapter 4 of Millian
Poquet’s manuscript [30].

1.2 Extensions
There are a couple of extensions that have been developed to deal with edge challenges,

such as machines getting unavailable during a job execution, on networks failures. In this
section, we present the ones that are already available, the events injector and the storage con-
troller. Modifications made in Batsim1 and its Python API2 for this work are available in a
separate branch of their main repository.

1.2.1 External Events Injector
To simulate the execution of an edge infrastructure, which by essence is subject to very

frequent unexpected or unpredictable changes, Batsim offers the opportunity to inject external
events on demand. Those events impact the behavior of the platform during the simulation and
thus the choices of the scheduling strategy. For example, one would be interested in studying
the behavior and resilience of a scheduling policy when a range of machines may become
unexpectedly unavailable for a period of time, due to a failure or action occurring at the edge
(from a local user).

The mechanism we implemented replays external events that occurred at a given time.
When an event occurs it is handled by the main process of Batsim, that updates the state of the
platform and the simulation, and then forwarded to the decision process.

An event is represented as a JSON object that contains two mandatory fields: a timestamp,
which indicates when the event should occur, and type, the type of the event. Then, depending
on the type of event, other fields can complement the event description, such as the name of
the unavailable resource for example, the new value of an environment parameter such as the
network bandwidth, or anything that is of interest to the decision process. External events are
injected in Batsim by one of its internal processes, which reads the list of events from an input
file containing one of the above described JSON objects per line.

This event injection mechanism is generic by the concept: users can define their own types
of events and associated fields, which will be forwarded to the decision process without any
modification in the code of Batsim.

1.2.2 Storage Controller
The Storage Controller is a Python module that exposes multiple functions to the scheduler

in order to manage the storage entities as well as the data transfers. In order to give the sched-
uler reliable information, it keeps track in real-time of the platform status, the on-going data
transfers, the available resources, etc. It also manages all aspects related to caching policies,
while offering advanced features such as speculation.

1https://gitlab.inria.fr/batsim/batsim/tree/temperature
2https://gitlab.inria.fr/batsim/pybatsim/tree/temperature

2
Simulated Platform

In this chapter we present how the Qarnot platform was modeled and we explain how the
required inputs were instantiated to be used on the Qarnot simulated platform. Then, it is
described the content of each file given as input and how they are generated.

2.1 Qarnot to Batsim/SimGrid Abstractions
Figure 2.1 depicts the real and the simulated platform. Each QMobo of the platform is

simulated as a SimGrid host (a machine which performs computation) as they are the only
computing units of the platform. QMobos belonging to the same QRad are aggregated in the
same SimGrid zone (a group of components managed by the SimGrid simulations), as well as
QRads of the same QBox, and all QBoxes of the QNode. The management of storage spaces
is done by adding special hosts that handle the storage role. Thus, in each QBox zone there is
one additional storage host for the QBox disk. Similarly, there is one storage host in the QNode
zone to represent the CEPH. For the computing requests, each instance of a given QTask can
run independently of the others, so we transcribed each instance as one Batsim job, with the
same data-set dependencies and submission time for instances belonging to the same QTask.
Regarding the heating requests, each change of the target temperature of a QRad is simulated
as an external event injected in the simulation, as well as when a QRad was turned off for being
too warm.

2.2 Workflow
In order to simulate the behavior presented in Section 3.1 the schedulers of the QNode- and

QBox-level were implemented in Python and both live in the same process, along with the Stor-
age Controller. Through the platform translation shown in Figure 2.1, the Qarnot platform has
been simulated as shown in Figure 2.2, which illustrates in detail how the abstraction between
the Qarnot and the simulated platform is performed and it is possible to see fewer components
for the same workflow since Batsim is in charge of all physical and execution process.

The simulated platform considers 3 main classes: the QNodeSched, QBoxSched and Stor-
ageController. Each one can communicate with the Batsim process delivering or receiving
information by messages.

We illustrate the simulated platform workflow in Figure 2.2. First, Batsim receives as input
and loads the events, platform, workload and the data sets description (steps 01 and 02). Then,

Figure 2.1 – Comparison between the real and simulated Qarnot platform.

the QNodeSched will be notified to take some decision (step 03). First, it should know which
resources are available. For that, every 30 seconds (defined as default), the QNodeSched ask
information about the state of the disk, QRads and QMobos of the QBoxes (steps 03 and 04),
in particular, the number of QMobos available for computation and the free storage space are
reported.

A first scheduling process is made at the QNode-level to dispatch instances of the QTasks
to the QBoxes (steps 05 and 06). The QNode tries to dispatch, for each QTask taken by priority,
as many instances as possible onto QBoxes, with respect to the number of available QMobos
and storage space left on the QBox disks.

Upon receiving instances of a QTask, the QBox will reserve for each instance a QMobo
from the warmest QRad for the case of low priority QTask, and a QMobo from the coolest
QRad in the case of high priority (step 08). This distinction is made to keep more QMobos
available in case that high priority QTasks are sent to the QBox in the near future. The QBox
then checks whether the Docker image and other data dependencies for these instances are on
disk and fetches any missing data from the CEPH (steps 08 and 09).

Once all data transfers are completed for this QTask, the QBoxSched will be informed by
the StorageController and then will allow Batsim to simulate the instance execution, which will
notify the QNodeSched whenever the instance completes (steps 11 through 14).

Finally, the queue of QTasks is updated and if an instance of the same QTask can be directly
dispatched, it is sent to the QBox and the execution starts immediately, without rebooting the
QMobo (steps 15 through 16).

28

Figure 2.2 – Simulated platform on SimGrid/ Batsim.

2.3 Extracting Qarnot Traces
A log extractor was built to generate all the input files to feed Batsim and the decision

process from real logs of the Qarnot platform, for a given time period. These files describe the
platform, the workloads and their data-dependencies, the list of data-sets and all events that are
mandatory to simulate the Qarnot system.

2.3.1 Platform Description
The definition of the platform is an XML file readable by SimGrid. The file describes the

whole platform to simulate, within details:

A list of QBoxes with for each:

• The id,

• The network bandwidth and latency to the CEPH and to its QBoxes,

• The storage disk host and its size,

• The localization,

• A list of QRads with for each:

– The id

– A list of QMobos with for each:

* The id,

* The list of speeds and corresponding power usage,

* The coefficients required for the temperature plug-in.

2.3.2 Workload Description
The workload is represented by a JSON file containing a list of job descriptions and a list

of profile descriptions.
Job descriptions are defined by the user requests and contain:

• The id,

• The submission time,

• The job profile to use.

Profile descriptions represent how a job should be simulated, plus other specific informa-
tion, and contain:

• The type of job to simulate,

• The number of flops to compute,

• The job priority,

• The list of data-sets required as inputs.

In addition, each Qarnot instance is represented by a Batsim job with a specific job profile
and requiring a single computing resource. Also, each job extracted provides the following
information, not used by Batsim, but useful for some analysis that will be presented in further
sections:

• The time when the job was started in the real platform,

• The time when the job finished in the real platform,

• The id of the real resource where the QTask was executed,

• The speed of execution in the real platform.

30

2.3.3 Data Sets Description
The list of data-sets is also described as a list of JSON objects, with one per line in the

file is read by the decision process and fed to the Storage Controller. Each data-set object is
represented by two fields:

• The id

• The size in bytes of the data-set.

2.3.4 External Events Description
As discussed in Section 1.2.1, each event is timestamped and is described as a JSON object:

• qrad_set_target_temperature: containing the id of the QRad and its new target temper-
ature. This event informs the associated QBox that the temperature target of a QRad has
changed.

• machine_available and machine_unavailable: containing a list of resources impacted by
this event.

• site_set_outside_temperature: containing the location and its new outside temperature.
This event is directly forwarded to the temperature plug-in(see ??).

In addition there is a stop_simulation event to ask the scheduler to kill all executing jobs and
reject waiting jobs to strictly stop the simulation after a given time. It is useful if one intends to
simulate a specific period of time, for example, the behavior of a platform for one week.

3
Job Allocation

As presented in Chapter 2, the HPC job allocation problem has been studied since a long
time ago, and the main idea is to fit, by some convenient metric, HPC jobs to be executed as
soon as possible onto resources. The metrics and weights taken into account for the decision
processes could change as the proposals of the system, but in general, from a queue of jobs,
allocation decisions among resources should be taken.

As one of the goals of this work, several scheduling policies were implemented in order
to compare their performances. In this section will be described the challenges present in its
use-case and all algorithms for the implemented policies.

3.1 Scheduling Challenges
The Qarnot proposal was described in Section 3.1, which is naturally a multi-objective

problem, because there are at least three viewpoints. The first one from customers that want to
compute (HPC customers), the second one from customers that want to be heated (hosts) and
the third one from the middleware.

The viewpoint of the HPC customers is what is found in classical distributed scheduling
systems: the goal is to get the results of submitted jobs as soon as possible. The viewpoint
of the hosts completely differs from what is found in classical scheduling theory since the
Qarnot foundation. Finally, the middleware viewpoint is specifically related to a goal of the
Qarnot computing business model, which is the one of reducing the energy consumption in the
processing of the jobs, related to the Qarnot business model since the company re-funds the
electricity bill of the hosts.

Following the Q.Ware infrastructure, the decision processes are taken in two-levels, through
the QNodes and the QBoxes. The scheduling at QNode-level can be viewed as an assignment
step. The idea is to dispatch, in priority, tasks to QBoxes having QRads which need to heat
the most. The scheduling at the QBox-level is in charge to select the best QRad based on its
QMobos, also download the required data-sets and report periodically the status of its resources.

From a QNode point of view, the notion of temperature and heating needs is unknown and
hidden behind other information sent periodically by the QBoxes, as detailed below. Upon the
arrival of a task, the QNode knows the following information:

• The number n of instances composing the task.

• The priority w of the task.

• The list of data sets {D1 · · ·Dk} which the task depends on.

The priorities are defined as high, low and background, such that QTasks with high priority
can preempt low and background others, QTasks with low priority can preempt background
others and QTasks with background priority can not preempt any other. This last one is not
a real HPC or IoT job submitted on the platform. Named burn_ job, this Qtask is a fake job
created locally when some user requires heating and there are no jobs to be sent to that QRad.
This way, this job is useful just to provide heating, been possible to be preempted anytime
whenever a real job arrives on that QRad.

Moreover, from periodic reports from the QBoxes, the QNode knows the number of avail-
able QRads for each type of priority, which is critical to achieving a good quality of service
regarding the priority of the tasks. For example, if there are not enough available QRads to
start a high priority task, some lower priority tasks being executed must be preempted to free
resources for that high priority task. Hence is necessary to have different values for the available
QRads, one for each different class of task priority.

The last source of information to help the QNode to dispatch tasks to QBoxes is provided
by the storage controller. This one is in charge of managing the data sets available in the
centralized storage and the QBox disks, as well as their movements. It also provides the list of
QBoxes already having the data sets required by that task.

Taking all this informations in account, the Algorithm 1, 2, 3, 4, 5 and 6 were developed as
follows.

3.2 Standard Schedulers

The standard scheduler for both levels was based on the current Qarnot QNodes and QBoxes
policies.

3.2.1 QNode Scheduler

The QNode scheduler is in charge of manage the queue of QTasks and dispatch to the
QBoxes that require heating, taking into account the priority of the QTasks. It is the central
decision maker and has a global view of the process, receiving information about the available
resources from the QBoxes and QTasks from submissions of HPC jobs or from IoT devices.
This scheduler was implemented as Algorithm 1.

3.2.2 QBox Scheduler

The QBox scheduler is in charge to require the data sets to the Storage Controller, dispatch
jobs to the QRads and start the execution of the QTasks in the QMobos whenever the data sets
are ready.

Algorithm 2 aims to execute an instance of high priority on the coolest QRad available, if
possible without preempting low instances. Then, it executes an instance with background/low
priority on the warmest QRad available.

34

Algorithm 1 QNode scheduler: dispatching instances onto QBoxes - Standard version
1: available_mobos_list← List of available QMobos among all QBoxes
2: qtask_queue← The list of QTasks to be dispatched
3: if qtask_queue /0 then
4: return
5: else
6: Sort the qtask_queue by 1) decreasing priority; 2) increasing nb_o f _running_instances
7: for qtask ∈ qtask_queue do
8: nb_instances_le f t← Number of instances of qtask waiting to be dispatched
9: if nb_instances_le f t > 0 then

10: mobos_list← List of QMobos from available_mobos_list with BKGD priority
11: Dispatch as many instances as possible on QMobos from mobos_list
12: if nb_instances_le f t > 0 and qtask.priority_group > BKGD then
13: # There are more instances to dispatch and the qtask is either LOW or HIGH

priority.
14: mobos_list← List of QMobos from available_mobos_list with LOW priority
15: Dispatch as many instances as possible on QMobos from mobos_list
16: if nb_instances_le f t > 0 and qtask.priority_group > LOW then
17: # There are more instances to dispatch and the qtask has HIGH priority.
18: mobos_list← List of QMobos from available_mobos_list with HIGH priority
19: Dispatch as many instances as possible on QMobos from mobos_list

Algorithm 2 QBox scheduler: dispatching instances onto QRads
1: waiting_instances← List of instances waiting to be scheduled on this QBox, sorted by

priority
2: for qtask ∈ waiting_instances do
3: Ask for the transfer of data-sets from the CEPH to the QBox disk.
4: if qtask.priority HIGH then
5: # Find coolest QRad which is not running LOW instance
6: qmobo_list← List of QMobos which is possible to run HIGH priority Qtasks
7: qrad_list← List of QRads by decreasing temperature
8: Run as many instances as possible in Qmobos∈ qmobos_list which are from Qrads∈

qrad_list
9: else

10: # Find warmest QRad among the availLow and availBkgd
11: qmobo_list← List of QMobos which is possible to run LOW priority Qtasks
12: qrad_list← List of QRads by decreasing temperature
13: Run as many instances as possible in Qmobos∈ qmobos_list which are from Qrads∈

qrad_list
14: if waiting_instances 6= 0 then
15: # Some qtaks could not be executed.
16: Reject the waiting_instances to the QNode Scheduler

3.3 QNode Schedulers Variants
Based on the standard QNode scheduler we built other four variants. This way we compared

its performances in order to describe which one fits better for the use-cases.

3.3.1 Locality Based Scheduler
The LocalityBased scheduler gives priority to the QBoxes already having in disk all data

dependencies of the QTask to be dispatched. This first variant, Algorithm 3, aims at avoiding
useless data transfers if some QBoxes already have the required data dependencies of a given
QTask.

Algorithm 3 QNode scheduler: dispatching instances onto QBoxes - Locality based version
available_mobos_list← List of available QMobos among all QBoxes

2: qtask_queue← The list of QTasks to be dispatched
if qtask_queue /0 then

4: return
else

6: Sort the qtask_queue by 1) decreasing priority; 2) increasing nb_o f _running_instances
for qtask ∈ qtask_queue do

8: nb_instances_le f t← Number of instances to be dispatched by the qtask
if nb_instances_le f t > 0 then

10: list_qboxes← List of QBoxes with the data sets required by the qtask.
mobos_list← List of QMobos from available_mobos_list with BKGD priority.

12: mobos_list← mobos_list filtered by QMobos from QBoxes in list_qboxes.
for mobo ∈ mobos_list do

14: Dispatch as many instances as possible on mobo.
if nb_instances_le f t > 0 and qtask.priority_group > BKGD then

16: # There are more instances to dispatch and the qtask is either LOW or HIGH
priority.
mobos_list← List of QMobos from available_mobos_list with LOW priority

18: mobos_list← mobos_list filtered by QMobos from QBoxes in list_qboxes.
for mobo ∈ mobos_list do

20: Dispatch as many instances as possible on mobo.
if nb_instances_le f t > 0 and qtask.priority_group > LOW then

22: # There are more instances to dispatch and the qtask has HIGH priority.
mobos_list← List of QMobos from available_mobos_list with HIGH priority

24: mobos_list← mobos_list filtered by QMobos from QBoxes in list_qboxes.
for mobo ∈ mobos_list do

26: Dispatch as many instances as possible on mobo.
Apply Algorithm Algorithm 1

3.3.2 Full Replicate Scheduler
The third scheduler, namely FullReplicate, replicates all data dependencies of a QTask on

all QBox disks before this QTask arrives in the system. This variant, described in Algorithm 4,

36

aims at visualizing the behaviors of the scheduling policy without any impact of the data move-
ments.

Algorithm 4 QNode scheduler: dispatching instances onto QBoxes - Full Replicate version
Replicate all data sets to all QBoxes.
Apply Algorithm Algorithm 1

3.3.3 3-Replicated and 10-Replicated Schedulers
Finally, the schedulers Replicate3 (Algorithm 5) and Replicate10 (Algorithm 6), replicate

all data dependencies of a QTask on the 3 and the 10 least loaded QBox disks, respectively.
These schedulers will behave as the LocalityBased one, whenever the datasets replications
happen. The replications are done upon the submission of a QTask.

As the LocalityBasedScheduler transfers new data sets whenever it is required by some
QBox and the FullReplicateScheduler transfers all data sets to all QBoxes whenever a qtask
arrives in the QNode, the 3-10Replicate schedulers are two trade-offs between 0% and 100% of
data replication before dispatching. They aim at reducing the waiting time of QTasks instances
by providing more QBox candidates for the LocalityBased dispatcher.

Algorithm 5 QNode scheduler: dispatching instances onto QBoxes - Replicate3 version
Whenever a QTask is submitted:

qbox_list← The list of the 3 QBoxes with most empty disks.
3: Replicate all data sets on QBoxes from qbox_list.

Apply Algorithm Algorithm 3

Algorithm 6 QNode scheduler: dispatching instances onto QBoxes - Replicate10 version
Whenever a QTask is submitted:

qbox_list← The list of the 10 QBoxes with most empty disks.
Replicate all data sets on QBoxes from qbox_list.

4: Apply Algorithm Algorithm 3

4
Experiments, Results and Discussions

By the logs extracted detailed in Section 2.3, we were able to obtain workloads for specific
periods of time. To compare the results of simulations we utilized workloads of one and three
days, one and two weeks. In this chapter we present the results regarding workloads with the
size of one week. Due to recent modifications in the Qarnot extractor, we had less than two
months of data available. To characterize one full month, we will present four workloads,
with each one started from 03, 10, 17 and 24 of May, denoted respectively as 1w_03, 1w_10,
1w_17 and 1w_24. In addition, the platform simulated was composed by approximately 3390
QMobos, from 669 QRads, managed by 20 QBoxes.

This chapter will present analyses and discussions done from two different sources of data,
the logs extracted and the simulations results. The logs extracted were used in part to compose
the inputs to the simulator and in part to validate the results and to process general information
from the real platforms. Then, Section 4.1 and Section 4.2 will present analyses from the real
logs extracted. And Section 4.3, Section 4.3.1, Section 4.3.2, Section 4.3.3 will describe the
analyses from the simulations results. Finally, Section 4.4 summaries all analyses done.

4.1 Job’s Processing Time
By the extracted logs, the processing time distribution for each workload was computed,

such that, for each QTask in each workload: processing_time= real_ f inish_time−real_start_time.
In other words, it was computed a list of processing times, for each instance of a workload, then
its distribution is presented in Table 4.1. To facilitate and use the terminology as the common
one in the literature, during this chapter we used QTasks and jobs as synonymous.

The Table 4.1 shows that all workloads have 25% of jobs with the processing time bigger
than the others 75%. Then, we characterize this instances as long jobs. Looking for each
workload in details:

• 1w_03: 75% of the jobs are processed in less than 635s, and 25% are processed up to
35372s, which is 55 times the maximal processing time of short jobs.

• 1w_10: 75% of the jobs are processed in less than 425s, and 25% are processed up to
27121s, which is 63 times the maximal processing time of short jobs.

• 1w_17: 75% of the jobs are processed in less than 425s, and 25% are processed up to
29700s, which is 143 times the maximal processing time of short jobs.

Table 4.1 – Processing time distribution for different weeks of workload

Statistics 1w_03 1w_10 1w_17 1w_24

Count 7350 5989 5497 8850

Mean (s) 465.96 582.25 480.21 403.93

Std (s) 817.18 2400.22 2268.20 1723.62

Min (s) 1.0 1.0 1.0 1.0

25% (s) 132.0 77.0 48.0 34.0

50% (s) 235.0 151.0 106.0 117.0

75% (s) 635.0 425.0 207.0 291.0

Max (s) 35372.0 27121.0 29700.0 28952.0

• 1w_24: 75% of the jobs are processed in less than 291s, and 25% are processed up to
28952s, which is 99 times the maximal processing time of short jobs.

Because of this distribution, we decided to split, for each workload, the results of the simu-
lations in two others, one composed of the jobs from the 75% of the distribution, and the other
one composed of the jobs from the 25% of the distribution, respectively, denoted by short_jobs
and long_jobs. In the same idea will be denoted as all_jobs the original workload.

First, we will present in the next sections the analysis of results of all_jobs, then we will
compare them with the analyses of short_ and long_ jobs aiming to point out some possible
effect caused by the size of the jobs.

4.2 Data Sets Dependencies

In order to investigate if the data sets somehow affect the scheduling policies, we discussed
in this section an analysis regarding the data sets dependencies. We figured out that several
QTasks depend on the same data sets, which could cause different results if considered at the
scheduling decision phase, for example, the Algorithm 1 does not consider this information.

The figures 4.1, 4.2, 4.3 and 4.4 show in x-axis the id of the data sets and in the y-axis the
number of instances that depend on that data set. It is important to emphasize here two points:
i) the first one is that a QTask is composed of many instances but, instances from the same
QTask could be allocated to different QBoxes, if there are not enough available QMobos on the
same QBox at the allocation phase. Then, these instances would require the data set transfer
to two or more different QBoxes. ii) The second one, as described in Section 2.3.2, a QTask
depends on a list of data sets.

In addition, is important to emphasize here that: i) these figures describe the number of
instances requiring the same data sets, which does not mean that the sum of all bars totals the
number of instances. For example, an instance could require the data sets with ID: 3, 5, 23 and
30. ii) The data sets with ID 1 represent the null data sets, which means that the jobs are not

40

dependent on any data set.

Figure 4.1 – Data sets dependencies for 1w_03 workload.
Number of instances: 7350. Number of data sets: 60

From Figure 4.1, one can see that the data set with ID 2 is required by about 6,700 instances,
which represents 91% of the total number of instances. It is followed by the data set with ID
19, about 5,000 instances, representing 68% of the total number of instances. In the figure, one
can also see other data set IDs reasonably required as 17, 34, 40 and 45, but, not so much as
the two emphasized.

Figure 4.2 – Data sets dependencies for 1w_10 workload.
Number of instances: 5990. Number of data sets: 43

From Figure 4.2, one can see that the data set with ID 18 is required by about 2,900 in-
stances, which represents 48% of the total number of instances. It is followed by the data sets
with ID 34 and 16, about respectively 2,400 and 1,700 instances, representing 40% and 28%
of the total number of instances. In the figure, one can also see other data set IDs reasonably
required as 1, 15, 24, 33 and 37, but, not so much as the two emphasized.

Figure 4.3 – Data sets dependencies for 1w_17 workload.
Number of instances: 5506. Number of data sets: 47

42

From Figure 4.3, one can see that the data set with ID 9 is required by about 3,700 instances,
which represents 67% of the total number of instances. It is followed by the data sets with ID
25 about 1,800 instances, representing 33% of the total number of instances. In the figure, on
can also see other data set IDs reasonably required as 1, 26 and 30, but, not so much as the two
emphasized.

Figure 4.4 – Data sets dependencies for 1w_24 workload.
Number of instances: 8852. Number of data sets: 66

From Figure 4.4, one can see that the data set with ID 3 is required by about 8,500 instances,
which represents 96% of the total number of instances. It is followed by the data sets with ID
15 about 5,000 instances, representing 56% of the total number of instances. In the figure, one
can also see other data set IDs reasonably required as 13 and 14, but, not so much as two the
emphasized.

Analyzing the data set dependencies we recognized that the four workloads extracted from
Qarnot are not equally distributed in terms of data sets. In other words, it is possible to see
from these ones that there are at least two very popular data sets among the instances, which
could affect the scheduling policies and will be discussed in the next section.

4.3 Scheduling Metrics
In order to compare various scheduling strategies based on real-world traces of the Qarnot

platform we discuss in this section the number and the total size of data transfers, along with
the bounded slowdown of the instances. The following discussion will be based on plots such
that the x-axis represents the workloads, respectively 1w_03, 1w_10, 1w_17 and 1w_24. In
addition, it is possible to see in x-axis the 5 scheduling policies implemented as described in

Chapter 3, respectively the FullReplicate, LocalationBased, Replicate10, Replicate3 and the
Standard. The y-axis represents the metrics discussed.

4.3.1 Data Transfers

The number of transfers and the total data transferred are two important metrics if, for
example, there are huge data sets which would take long time to be transferred, or in the case
of limited resources in terms of storage disks, which will not support many data sets in the same
machine.

Total data transfered (GB)

Number of data transfers

1 2 3 4

0

500

1000

0

500

1000

Workloads

Scheduler

FullReplicate

LocalityBased

Replicate10

Replicate3

Standard

Figure 4.5 – Total data transferred for 1 week workload

From Figure 4.5 one can see that for both the Number of data transfers and the Total size of
data transferred (GB), the schedulers FullReplicate, Replicate10 and Replicate3 are the three
with the highest values, with the exception of the Replicate3Least-Loaded for the workload
2 in the Number of data transfers. But, in general, this behavior is totally expected since,
respectively, they replicate data sets in all, 10 and 3 QBoxes.

44

On the other hand, at the first time, we expected that the LocalityBased would reduce the
number of data transfers compared to the Standard scheduler. But, as we analyzed the data sets
dependencies, this behavior could be justified by the high popularity of few data sets among
the workloads. We believe that what happens in this specific scenario is that the LocalityBased
would reduce data transfers until a QBox get unavailable running as many instances as possible.
Then, this very popular data sets should be transferred to other QBoxes and it would happen,
maybe, during the whole simulation. This way, the LocalityBased got closer or higher values
between itself and the Standard scheduler, even the last one does not consider any location or
data set information in the allocation decision phase.

We believe that if the data sets dependencies would be well distributed among the work-
loads, the LocalityBased policy would reduce the number of data transfers, but it is not our case
and we would need to simulate this specific kind of data to validate it.

4.3.2 Bounded Slowdown

The bounded slowdown is a classical metric that has been utilized in the literature [16]
and was implemented in the context of this work because it was not computed from the toolkit
utilized. We computed the bounded slowdown as bounded_slowdown = max{(waiting_time+
execution_time)/max{execution_time,τ},1} , such that τ denotes a threshold, equals 1 for our
experiments, since this is the minimum size of our instances as the table 4.1. Here we also
considered that waiting_time of an instance depends on the time to transfer the required data
sets and the time to decide in which QMobo the instance should be executed. This metric has
been utilized to analyze if the waiting time of a job is proportional of its size. Considering
that one important goal of scheduling policies is manage the waiting time of the jobs, it is an
important metric. In addition, it is known that this metric is more sensitive for short jobs, since
if the execution time is close to zero, this formula depends on the waiting time and the threshold.
If the waiting time of short jobs is higher than its execution time, the bounded slowdown will
be high, which does not mean that the execution time was high, but the inverse.

From Figure 4.6 one can see that the FullReplicate scheduler presents the lowest values for
both measurements, the Mean bounded slowdown and Max bounded slowdown. For almost all
the other cases, the Replicate10 and Replicate3 are the next lowest ones, with the exception
of the Max bounded slowdown with the second and fourth workloads. But, in general, this
behavior is also totally expected since these schedulers replicate much more data sets than
the LocalityBased and Standard. Then, the waiting time for jobs managed by FullReplicate,
Replicate10 and Replicate3 tends to be small, because it does not depend on the data transfer
time, it just depends on the decisions process time, in general.

Following the same justification as Section 4.3.1, the LocalityBased presents closer or
higher values when compared with the Standard thanks to the data sets dependencies. We
believe that because of the waiting time of the data transfers, the instances managed by these
schedulers wait more time than the others managed by the replicate based schedulers (FullRep-
licate, Replicate10, Replicate3). In addition, we believe that the LocalityBased presents, in
general, a bounded slowdown bigger than the Standard because the LocalityBased does, also
in general, more data transfers and transfers more data than the Standard.

To analyze in more detail, as we explained above, the bounded slowdown is more sensitive
for short jobs than long jobs, then in the next section we will present comparisons looking for
grouped instances by their sizes.

Max bounded slowdown (log10)

Mean bounded slowdown (log10)

1 2 3 4

1

2

3

1

10

100

1000

Workloads

Scheduler

FullReplicate

LocalityBased

Replicate10

Replicate3

Standard

Figure 4.6 – Bounded Slowdown for 1 week workloads

4.3.3 Job’s Size Effect in the Measured Metrics

Due to the characterization of 75% of the jobs as short and 25% as long, the results of
the previous simulations were split into two others. This way we investigated the effect of the
short and long jobs on the bounded slowdown. It is important to emphasize that the data comes
from the same simulation, we filtered the results from the all_ jobs and split into two other, as
small_ jobs and long_ jobs, as explained in section 4.1.

As one can see, the behavior in Figure 4.7 is, in general, the same as Figure 4.6. As
this data is composed only for short jobs, its execution_time is low, then, we attributed the
high values visible in Figure 4.7 to its waiting_time. Finally, as the replicate based schedulers
(FullReplicate, Replicate10, Replicate3) present low values when compared with the others,
we attributed that the waiting_time for the LocalityBased and Standard schedulers is impacted
much more by the data transfers time than the allocation decision process time.

The behavior in Figure 4.8 is different when compared with Figure 4.6. Here the values for
the FullReplicate are the highest ones and we justify it by the waiting_time from the allocation

46

Max bounded slowdown (log10)

Mean bounded slowdown (log10)

1 2 3 4

1

2

3

1

10

100

1000

Workloads

Scheduler

FullReplicate

LocalityBased

Replicate10

Replicate3

Standard

Figure 4.7 – Bounded Slowdowns for short jobs from 1 week workloads

decision process that, in general, takes more time than when it is done for short jobs. But, is
important to emphasize here that the values of Figure 4.8 in the Mean bounded slowdown are
lower than the presented in Figure 4.7, that is why is not possible to see the second tick in the
y-axis of this plot.

Comparing Figure 4.7 and Figure 4.8 one can see that the premise that short jobs are more
sensitive to these metrics is true in our case, because the first figure presents higher values than
the second. And considering that 75% of the jobs are being represented in Figure 4.7 as the
short jobs and 25% in Figure 4.8 as long jobs, we understood that the behavior of Figure 4.6 is
much more impacted by the short jobs into these workloads.

4.4 Analyses of Results

All performed simulations were deterministic, then we ran one simulation with each sched-
uler for several inputs corresponding to 1 day, 3 days, 1 week and 2 weeks of the Qarnot

Max bounded slowdown (log10)

Mean bounded slowdown (log10)

1 2 3 4

1

1

3

10

Workloads

Scheduler

FullReplicate

LocalityBased

Replicate10

Replicate3

Standard

Figure 4.8 – Bounded Slowdowns for long jobs from 1 week workloads

platform. The running time of one simulation was less than 5 minutes for a 1-day simula-
tion, around 10 minutes for a 3-day simulation, less than 35 minutes for a 1-week simulation
and around 50 minutes for a 2-week simulation, with about 15% of the time was spent in the
decision process.

We compared the different scheduling policies according to various metrics, including the
number of transfers, the total transferred data and the mean and max bounded slowdown. In
addition, we analyzed the job’s processing time distribution and the data sets dependencies.

Due to lack of space, and as the simulations of the four periods (1-day, 3-days, 1-week and
2-week) lead to similar conclusions, we only present in Table 4.1 the results for the 1-week
period.

The results show that, as expected, the three policies using replication improved the schedul-
ing metrics compared to Standard, with a cost of an increasing size of the data transfers. Re-
garding the LocalityBased scheduler, the improvement of performance is quite low and even
worse for all presented metrics, when compared with the Standard algorithm. This was quite
surprising at first as the total transferred data actually increased, while the initial purpose of

48

this scheduler was to leverage the data transfer already performed. But, regarding the data set
dependencies it was justified. Such results, which are counter-intuitive, clearly illustrates the
importance of validating the behaviors of scheduling algorithms through simulations before
envisioning their real deployment.

The first thing to notice is that all variants improve the scheduling metrics compared to the
standard algorithm of Qarnot, except for the mean bounded slowdown of LocalityBased, which
is very close to the baseline, with a cost of an increasing size of the data transfers.

Comparing the replication policies, we can see that Replicate3 and Replicate10 present
similar results, and that the FullReplicate gains are almost double compared to the partial rep-
lication policies with a cost of doubling the size of the data transfers as well. We can deduce that
replicating data-sets before applying the LocalityBased placement policy is beneficent users’
point of view, but deciding how much replication the system should do is not trivial. Going
from 3 to 10 replicas does not seem to improve much the quality of service while doubling the
cost in terms of data transfers, and duplicating the data sets everywhere almost halves the mean
waiting time and bounded slowdown compared to the standard Qarnot scheduler, at a cost of
multiplying by 5 the total size of data transfers.

Finding a good job scheduling policy for Qarnot Computing is still an ongoing action. And
regarding the data sets dependencies, further strategies could predict the data transfers time and
then, the scheduling policies could be mixed between a replicated one whenever a very popular
data set is recognized, and locality based if the data sets would be equally distributed among
the jobs.

5
Conclusion and Future Remarks

5.1 Concluding Remarks
We utilized in this work a dedicated toolkit to evaluate scheduling policies in edge comput-

ing infrastructures. Its integration into a simulator leads to a complete management system for
Edge Computing platforms that focus on the evaluation of scheduling strategies.

This work presented how to use a simulated Edge Platform to easily evaluate existing place-
ment strategies, even if the platforms complete validation was still an on-going work. It may
also serve at developing and testing new strategies thanks to its modular and clear interface.
To assess the interest of such simulator, we instantiated the toolkit to simulate the whole Edge
Platform of the Qarnot Company based on smart heaters.

We showed that to get a strategy as the best one, first of all, it is important to know the
workload that will be managed and its data-set dependencies. Thanks to our use case, we
investigated several scheduling strategies and compared them to the actual policy implemented
in the Qarnot platform. We showed that the workloads managed by the Qarnot are composed,
in general, of 25% of long jobs and 75% of short jobs. We also showed that a majority of
instances in these workloads require the same data sets. Finally, we showed that considering
the context of the Qarnot Computing, the best strategies are those which take into account
replication of data-sets.

We considered the work that has been developed until here very important to the Qarnot
Computing in the sense that it could be a very useful tool to simulate their strategies, intended
modifications, to anticipate some behaviors and also to prepare environments and offices that
would utilize their products. All of it thanks to a simulated tool, that allows engineers to
perform this kind of studies without affecting their production system.

Since this context presents many challenges, we know that there are several possibilities to
continue this work and the main future goal is to achieve the development of a complete Edge
Computing Simulator, that is still on going due to the difficulties presented in Chapter 2. But,
we consider that this manuscript was a step forward in this context.

Part III

The Logs Data Analysis

1
Methodology and Data Analysis Process

Our analysis followed four main steps: (i) the data understanding process, (ii) the measure-
ment errors recognition, (iii) an analysis descriptive of the data, (iv) a method to categorize the
Smart Heaters by their temperatures distributions.

1.1 Data Understanding
In the first step (i) we had our first contact with the Qarnot’ logs. Then, it was necessary a

first overview of the data, its structure, the size of the files and how long does the logs follow
the QRADs temperatures. At this step we looked to all information available in those logs and
decided which one would be useful for our objectives.

1.2 Measurement Errors Recognition
The second step (i) was performed in order to clean our data, for that, we first filtered the

measurements errors from all data available, in order to better search and remove the errors
from other measurements, which could mess around the temperatures ones. Then, we selected
the five type of temperatures mentioned in the previous section, ignoring the other information
available in the logs (i.e, powers, frequencies, etc).

1.3 An analysis descriptive of the data
The third step (ii) was done in other two other steps: (a) by an overview of the data, since

this is the first analysis of the Qarnot’s logs, it was necessary to analyse how the data behaves in
general. For that, we searched for particularities and patterns. After that, we saw the necessity
to split the temperature range, which was originally from 0º to 80º C, in three others. Then, on
step (b) we analysed the Smart Heaters for each range, analysing their temperatures distribution
together and individually.

1.4 Smart Heater Characterization
In the fourth step (iii) we developed and applied a methodology to group the Smart Heaters

based on their behaviors, reminding that we considered as behaviors the distributions of tem-

peratures. It is also important to remind here, that we performed the following methodology
for each range of temperature from step (ii-a). This methodology followed other six steps,
illustrated in the Figure 1.1.

Figure 1.1 – Workflow for the QRADs’ Categorization

Depicting each step from the Figure 1.1: (a) on subsection 1.4.1 we fixed and performed an
Analysis of Variances (ANOVA) for each type of temperature, in order to verify if there were
similarities among the different Smart Heaters. Then, since we noticed on (a) that there were
significant differences among the Smart Heaters, on step (b), in subsection 1.4.4 we investigated
in which pair of Smart Heaters were those differences. For that, we performed pairwise t-test
comparisons among all Smart Heaters, and for those pairs where did not result significant
differences, we considered that it means that there were similarities between those machines.
Then, on step (c), in subsection 1.4.5 we grouped all machines considered similar. But, looking
for all groups created there were some conflicts, which means that there were different groups
containing the same Smart Heaters. For that, we developed, as step (d), in subsection 1.4.6, the
Homogeneity Coefficient, a measurement of the strength of a group, based on the results from
(b). This way we measured in which group a fixed Smart Heater fit better. Using (d) we solved
the existent conflicts on the step (e), in the subsection 8. At this point we got a set of groups of
Smart Heaters for each type of temperature. It means that each set has the best groups of Smart
Heaters based on only one temperature. As our final goal, we want to group them based on all
temperatures. For that, we performed the last step (f), in subsection 1.4.8 which is the same as
(e), but now we grouped the Smart Heaters from all groups and sets got so far.

The reminder of this section will depict this full method to group/categorize the QRADS,
step by step.

1.4.1 One-Way Analyses of Variance

The analysis of variance (ANOVA) is a method to analyze the differences among group
means in a sample. It is based on the law of total variance, where a fixed variable is partitioned

56

into components attributable to different sources of variation. In a simple analysis, ANOVA
provides a statistical test of whether two or more population means are equal, generalizing the
t-test beyond their means.

This analysis supported us to answer the following question: Can we take the analyzed
distributions as similar? and the answer was a significant value, p-value, which compare all
groups and answer if we could do it.

Since we want to categorize our QRADs based on its temperatures distributions we will use
all distributions of the same type of temperature in the same data set, to compare all of them.
This way we will use the Analysis of Variance to know if there are significant differences
among those distributions in order to know and investigate each difference or similarities. It is
important to emphasize now that, we will use the argument of non difference among QRADs
to consider that there are a similarity among themselves.

Since this analysis do not show us information regarding each group (QRAD) in specific,
we just now that for this data there are or not significant differences, but we do not know
where. Then, we will perform a pairwise test to investigate it. But first, we need to examine
two requirements for the ANOVA analysis.

1.4.2 The requirements and relaxed metrics
The One-way Analyses of Variance requires that the distributions should follow the normal

distribution, and their variances should be equal. For these reasons, we analysed the residuals
for the ANOVA model computed.

1.4.3 The Kruskal-Wallis test
Although the two ANOVA requirements were not respected in our data, we computed the

same steps again using the Kruskal-Wallis Test, which is a test based on the ANOVA but deal
with the no respect of their requirements.

Even the ANOVA or the Kruskal-Wallis test, they do not show us where the found differ-
ences are, these analyses just tell us that there are differences among the analysed groups but
they did not point where.

For this reason the next step is the pairwise analysis which goes one step further comparing
all groups(QRADs). Then, it will be possible to investigate which one is similar and which one
is not.

1.4.4 Pairwise T-Test
The Pairwise T-Test use the fact that there is a significant difference among the groups

analysed by the Kruskal-Wallis test, and calculate pairwise comparisons between group levels
with corrections for multiple testing.

The result is a table of p-values for the pairwise comparisons. In our case, the table shows
the comparisons among all QRADs depicted as pairs Q[01..15] x Q[00..14]. For each line we
have a fixed QRAD that is compared with all others. It is a lower triangular table, because the
half part above the secondary diagonal repeat the same values. All cells shows the p-value for
the comparison between the two QRADs.

Based on that, now, we were able to verify which QRAD can be taken as different and which
one can not compared with the others. Since our goal is to find a method to group the similar

ones, we are searching for those line which a p-value > 0.05. In other words, we will consider
as similar those QRADS, which can not be taken as different by their p-value computed.

1.4.5 Categorization

To categorize the QRADs merging them in groups we will use the tables produced in the
previous step, each one for their own kind of temperature.

First of all, it is important to remember that we are interested in the QRADs with p-value
> 0.05. As each p-value represents a pairwise test, we write it as p-values[QA, QB] = alpha,
then if alpha > 0.05 we conclude that there are not results representative enough to show a
significant difference between QA and QB, then we consider that they are similar.

For that, we performed the first categorization step, grouping the QRADs as follows: for
instance, lets take the QA and QB if p-values[QA, QB] > 0.05, for a fixed QA and compared
with all others, as QB. Finally, the QA is fixed in the end off all groups to show from which
line of the p-values table that group were extracted.

Since there are different groups with the same QRADs, wich is not desired because our
goal is to group the QRADs without replications. Then, we are also considering that as much
as the p-values are closer to 1, the QRADs are more similar. Notice that the p-value = 1 means
that both QRADs are equal. Based on this idea, the next step is a method to compare the
different groups created in this step, in order to decide in which group a specific QRAD should
be owned, since it was pre-grouped in two or more groups.

1.4.6 Homogeneity coefficient

Regarding the p-values computed and the significance of the measurements, as much as a
p-value are close to 1 it means that those two QRADs are more similar from each other. The 7
presents how the homogeneity coefficient of the groups was computed.

Algorithm 7 Homogeneity Coefficient
Data: group, p_values_matrix
Result: the homogeneity coefficient of the group
if len(group) > 1 then

total = 0
count = 0
aux_groups = group.copy()
fixed_log = get_last_item(group)
group = remove_from(group, fixed_log)
for qrad in group do

total += p_values_matrix[fixed_log, qrad]
count += 1

end
return total/count

else
return 0

end

58

1.4.7 Merge groups into categories
Whenever we found a conflict of elements among the groups, which means that there are

the same QRAD or QRADs in different groups, we need to decide in each one this item or
items should continue.

This way, we will use our homogeneity coefficient to decide in which group the QRAD
contributes more to increase their homogeneity coefficient, and the Algorithm 8 presents how
we did it.

Algorithm 8 Group decisions algorithm
Data: group_a, group_b, fixed_item
Result: 0 for group A, or 1 for group B
coeff_a = homogeneity_coefficient(group_a)
coeff_b = homogeneity_coefficient(group_b)
if (len(group_a)-1 == 1) and (len(group_b)-1 == 1) then

if coeff_a ≤ coeff_b then
keeps the fixed_item on group B
return 1

else
keeps the fixed_item on group A
return 0

end
else

coeff_aux_a = homogeneity_coefficient(group_a.remove(fixed_qrad))
significance_a = coeff_aux_a - coeff_a
coeff_aux_b = homogeneity_coefficient(group_b.remove(fixed_qrad))
significance_b = coeff_aux_b - coeff_b
if significance_a ≤ significance_b then

keeps the fixed_item on group B return 0
else

keeps the fixed_item on group A
return 1

end
end

Then, in our case, we will have five sets of groups, one for each type of temperature, at the
end of this step. The next and the final one is to merge these sets of group in an unique one.

1.4.8 Merge groups from different categories
As our last step, we need to group the QRADS based on many categories. Then, we will

use the groups from the last step, which respect each type of temperature, and we will apply
the same procedure to merge all of them to get the final groups.

For that, we used the same procedure. It is important here to emphasize that the step to
compute the homogeneity coefficient takes in account the p-values table from that specific type
of temperature, and now we have three different p-values tables to take into account. We
take that there is no needs to differ the method because whenever we solve a conflict among
groups from different type of temperatures our method decides to keep the QRAD which affects

more its group for its type. Which means that in the end, we will have always the highest
homogeneity coefficient for all groups.

60

2
Results and Discussions

In this chapter we present the results from each step described above. It is important to
remind that at some points the analysis were built using all data available, and at other points,
it was done analysis with data filtered based on the temperature ranges.

2.1 Data Analysis
The first part of the results, presented in this section, will follow discussing the analysis

of the logs from Qarnot, the data understanding process in Section 2.1.1, their measurement
errors in Section 2.1.2, a general data description in Section 2.1.3, its details for each different
ranges of temperature in Section 2.1.4, Section 2.1.5, Section 2.1.6, and an analysis regarding
the stability of the data in Section 2.1.7.

2.1.1 Data Understanding

We had access to sixteen logs from smart heaters of Qarnot Computing, which vary from
a minimum of 40 minutes to 3 weeks of measurements. Each registry in the logs contains raw
measurements of a certain point in time. This measurement is usually set to be performed at
each 10 seconds. For each timestamp we have the following measurements regarding the smart
heaters: temperatures, powers, frequencies, and states (on/off). At this first moment we are
interested in study the temperatures of the smart heaters. For this task we therefore focused on
five types of temperatures that are present in the logs, namely (i) ambient temperature, which
is the temperature of the environment where the smart heater is situated, (ii) CPU temperature,
(iii) heatsink temperature, which is the temperature of the main heat conductor between the
CPU and the environment, and (iv) the target temperature, which is the temperature requested
by the heating user.

2.1.2 Measurement Errors Recognition

We analysed the logs in order to find and remove measurement errors. For the temperatures
the highest one was 55125 ºC for the heatsink, which we considered impossible to happen. As
the minimum values, we found 0º C for the motherboard even with all other temperatures were
higher than that, then we also considered these measurements as errors. In the end, we defined
as valid, the temperatures higher than 0º C and lower or equal than 80º C.

Even if we were interested only on the temperatures, we took into account the errors meas-
ured from other parameters as the powers. We did it because we considered that if the power
measurements were wrong, we could not trust in the other values for that sample. We figured
out power measurements like -7344187 W and 7344259 W. We defined as possible values the
powers inside the range starting from 0 to 1000 W.

At the end of this step we filtered 150258 samples from 1265825 originally, representing
about 12% of useful data.

2.1.3 Data Description

To first have an overview of all QRADs and their temperatures distributions, we summar-
ized all these information in the Figure 2.1, which presents all the sixteen QRADs and their
temperatures distributions as box-plots. Each QRAD was named as ’Q’ plus a number from 0
to 15:

At a first view of the Figure 2.1 it would be possible to conclude that there are many similar
QRADs, but we should pay attention in some parameters, as the range of the temperatures
which are from 0º to 80º, for many days. These box-plots could hide information as machines
turned off almost all the analysed time and turned on just one day. Also, there are many point
recognized as outliers for various QRADs.

Looking for the box-plots shapes, it is possible to see that many of them represent distribu-
tions that varied among the time, which means that the temperatures increased and decreased.
We assume that it should happen for mainly two reasons: (i) the QRAD users changed the
requested temperature, for more or lass than previously, or (ii) whenever a job was finished,
it would take some time to receive and start to run another one, implying in the temperature
decrease for some time.

Then, considering this behavior, we understood that whenever a temperature starts to de-
crease or increase, the other one should follow this behavior. But, from this figure is difficult
to see details and to analyse behaviors such the increase or decrease of temperatures.

For that reason we decided to split our analysis in three moments, using three ranges of
temperatures. This way, we could mitigate information that could be hided. From several
attempts, we decided to split our data following the following ranges: a) [0,35]º C, b)]35, 60]º
C and c)]60, 80]º C. The following sections will present the analysis of each one of them.

2.1.4 The first range

Analysing the 2.1 we could see that, mainly the ambient and the target temperature were
centered around 20 and 33º C. Also, there are many QRADs with values under 30º C. Then, the
first range of temperature starts from 0º C and overs at 35º C, included. The Figure 2.2 presents
all QRADs with all distributions inside this range.

From the Figure 2.2 it is possible to see that the Q08 does not have some type of temper-
atures, which means that there is no register of that type of temperature in the current range.
A second observation from this figure is that the type of temperatures achieving temperatures
lower then 20º C are the ambient and the target, which is completely expected.

In order to go further in the details, we fixed each type of temperature to compare the
QRADs. The following figures present the temperatures distributions as box-plots and densinty-
plots for all QRADs:

62

Figure 2.1 – Distributions of Temperature Summarized by Box-Plots, for all QRADs

• Ambient
The Figure 2.3 shows the ambient temperature which is more or less in the range from
18º to 25º C, with some exceptions achieved by the outliers.

• CPU
The Figure 2.4 presents the CPU temperature distributions by box-plots (a) and density-
plots(b). It possible to see that the distributions are inside the range [28,35]ºC, in details.
A remark possible to be done here is that those machines could be idle based on its
temperatures. The density plot (b) shows better the similarities among the distributions,
because it is possible to see the same behaviors by the similar curves, with the difference
of the slopes, representing the different frequencies.

Figure 2.2 – Distributions of Temperature Summarized by Box-Plots, for all QRADs, in the
first range

• Heatsink

From the Figure 2.5 it is possible to take as minimum values 20º C with exception of
one QRAD with a minimum value about 15º C. Although, the majority of values are
around 25, 30º C. The main observation here, is that the minimum value of the heatsink
distributions are about 20º C, but from the Table 2.6 is possible to see that the CPU
minimum values are about 23º C. Then, this difference emphasizes that the heatsink
temperatures is not the same as the CPU because the heatsink is also in contact with
the ambient temperature. In other words, the heatsink temperature represents the merge
between the inside components temperature and the ambient one.

64

Figure 2.3 – Ambient Temperature Distributions, for all QRADs, in the first range

• Motherboard

From the Figure 2.6, it is possible to see that all QRADs follow the same behaviors when
compared with the CPU distributions in the Table 2.6, as expected.

• Target

From the Figure 2.7 it is possible to see that there are some QRADs with an unique
temperature for all distribution, with exception of some outliers, as the Q00 about 26º,
Q05, Q07 and Q13 about 16º, Q08 and Q12 about 21º, and Q09 about 24º all the time.
The main remark here is that the majority of the target temperatures are almost fixed.
Then, why the other types of temperatures does vary a lot, even the one in the ranges
presented until here? We expected that once the target temperature would be achieved,
the distributions of the other types of temperatures should stabilize, because, in the end,
this is the main goal of the QRADs (aka. heat the users).

2.1.5 The second range
From the firs Figure 2.1 it is possible to see that the heatsink, cpu and motherboard temper-

atures vary, mainly from 35º to 80º. As it is also possible to see that just few QRADs achieve
such high temperature as 80º, we fixed the second range starting from 35º to 60º, included. The
Figure 2.8 presents the QRADs behaves inside this range.

From the Figure 2.8 is possible to see that there is no ambient or target temperature in this
range. Which means that the ambient are only present in the previous range, with the maximum
of 30º. Since the target is also not present here, it means that the temperatures in this range are
those achieved by these components to produce the heat required in the QRADs (smart heaters).

Figure 2.4 – CPU Temperature Distributions, for all QRADs, in the first range

(a) Boxplot of distributions.

(b) Density of temperatures.

The following topics present box-plots and density-plot for the distributions of all QRADs,
for each fixed type of temperature.

66

Figure 2.5 – Heatsink Temperature Distributions, for all QRADs, in the first range

Figure 2.6 – Motherboard Temperature Distributions, for all QRADs, in the first range

• CPU:

The Figure 2.9 shows that just one QRAD looks like that has changed from 35º to 58º C.
There are 10 QRADs with a ceiling of 40º and other four inside 55º, 58º C. The remark

Figure 2.7 – Target Temperature Distributions, for all QRADs, in the first range

here is about the QRADs with the ceiling of 40º, which we suspect that were idle inside
this range.

• Heatsink:

The Figure 2.10 present distributions which look very spread in the range 30º, 55º C,
with about 8 QRADs. But, there are some QRADs very restrict in the range 50º ,55º C.
Here we can discuss again the relation between the ambient temperature and the other
QRADs inside components, once the heatsink represent the merge of these temperatures.
Here, it is possible to see that the heatsink achieve temperatures like 55º C, but the am-
bient temperature is not present in this range. It is also possible to see that the ambient
temperature impacts in a high variation of the heatsink, as the box-plots shapes present,
and emphasizes the difficult to produce and keep the targeted temperature.

• Motherboard:

From the Figure 2.11 is possible to see that the motherboard temperatures are very close
to the CPU ones, as the well as the first range, representing the strong relation between
both temperatures, CPU and motherboard.

2.1.6 The third range of temperatures
Since there are few machines achieving high temperatures, we would like to investigate

them. Then, the Figure 2.12 presents the distributions of temperatures inside the range starting
from 60º to 80º C, for all QRADs.

From the Figure 2.12 is possible to see that there is no target for this range, which means
that there is no users that would like to be heated as much this range represents. Also, there is

68

Figure 2.8 – Distributions of Temperature Summarized by Box-Plots, for all QRADs, in the
second range

no ambient or heatsink for this range, which means that nether any ambient that achieve this
temperatures. We understood that the motherboard and CPU getting so hot means that they are
doing to produce the heat required. Even that, the heatsink does no spread this temperature,
since it is not present in this range of temperatures.

The following topics present the distributions by box-plots and density-plots for each type
of temperature and all QRADs:

• CPU:

The Figure 2.13 shows that there are more or less 8 QRADs with similar shape inside
63º, 75º C.

Figure 2.9 – CPU Temperature Distributions, for all QRADs, in the second range

Figure 2.10 – Heatsink Temperature Distributions, for all QRADs, in the second range

• Motherboard:

The Section 2.1.6 shows, again, that the motherboard temperature are very close to the
CPU ones. It was a behavior followed in the three ranges of temperatures. Represent-

70

Figure 2.11 – Motherboard Temperature Distributions, for all QRADs, in the second range

ing that this relation is not affected by the increase or decrease of the temperatures, as
expected.

2.1.7 Stability

The previous analysis allowed us to question topics as the stability of the distributions,
which means, the consequences of the heat produced by some component in another one. Does
the heat produced by the CPU affects the ambient one? In this section we discussed this point
and use some of the QRADs to illustrate a good and a doubt scenario.

How the temperatures change in order to deliver the target temperature by the ambient
temperature? Looking to the shapes of each QRAD in the Figure 2.1, there are some ones
which looks like very stable in terms of this point of view. For example, the Q13 has the target
temperature fixed in 27º C and the other temperatures vary few. This one is a good example but
it is the log with less data available, with 300 samples representing 50 minutes, while the other
ones represent about 3 week. The Q07 represents the same good and expected behavior, as the
Figure 2.15 shows. With exception of some outliers, it presents a small variation for the CPU,
motherboard and heatsink temperature. These outliers could represent the periods or instants
when a job finishes and other one is allocated to that QRAD. The Figure 2.15 shows in the left
the full period of temperatures measured for this QRAD, and in the right we presented a slice
of this period emphasizing the described behavior.

In contrast, it is possible to see in the Figure 2.1 that the Q00 presents its target temperatures
concentrated about 25º C with exception of some outliers. But, the other distributions, cpu,
motherboard and heatsink vary a lot. The Figure 2.16 presents, in the left, the distributions
for all period measured, and in the right, it presents a slice of this period emphasizing that the

Figure 2.12 – Distributions of Temperature Summarized by Box-Plots, for all QRADs, in the
third range

variation of the CPU, motherboard and heatsink temperatures does not affect the ambient one
in this QRAD.

Then, we raised the hypothesis of a non very accurate mechanism for cooling when needed.
We expected that since the cpu, motherboard and heatsink temperatures vary, the ambient one
would vary in the same proportion, either for heating or for cooling. The Q00 show us the
contrary, that the variation of the cpu, motherboard or heatsink temperatures do not affect the
ambient one, in a direction of cooling. The same is observed for some other QRADs when
analysed in this same sense. If by one side we can consider this behavior as expected since
the QRADs are radiators and not air conditioners, by the other side it is very reasonable that
since an user wants to reduce their ambient temperature, which was heated by the QRADs, this

72

Figure 2.13 – CPU Temperature Distributions, for all QRADs, in the third range

Figure 2.14 – Motherboard Temperature Distributions, for all QRADs, in the third range

machine could do it.

Figure 2.15 – Temperature Distributions over Time, QRAD07

(a) Full Measurement.

(b) A Focused Interval of Time.

2.2 Categorization based on Distributions Analysis of
Variances

In this section we will present some results of our method to group/categorize the QRADS,
based on the analysis of variances of their distributions.74

Figure 2.16 – Temperature Distributions over Time, QRAD00

(a) Full Measurement.

(b) A Focused Interval of Time.

2.2.1 One-Way Analyses of Variance
When we performed the Analysis of Variance based on our data, we got an ANOVA model,

with the following results:

Table 2.1 – Anova Summary

Df Sum Mean F value Pr(>F)
log 14 79288 5663 2163 <2e-16 ***

Residuals 166664 436463 3
—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

From the Table 2.1, the Pr(>F) column represents the p-value, and the Signific. code meas-
ures their quality. The resulted p-value < 0.05 is very significant since it is close to 0. Which
means that there are significant differences among the groups, for us, the QRADS. Then, we
can conclude that is not possible to consider that all QRADS behave at the same way.

2.2.2 The requirements and relaxed metrics

To analyse the ANOVA requirements we investigated the residuals for the ANOVA model
computed.

Homogeneity

When we verify the homogeneity of the data we are verifying if the distributions variances
are equal or not. The Figure 2.17 shows the plot of the models’ residuals.

Figure 2.17 – Residuals for homogeneity

Based on the Table 2.2 we can see that the data is not homogeneity, since the plot does not
show its points well distributed.

We also used the Levene’s Test, as a computational method to do this verification, presented
in the Table 2.2

76

Table 2.2 – Levene’s Test for Homogeneity of Variance (center = median)

Df F Value Pr(>F)
group 14 1327.7 <2.2e-16 ***

166664
—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Based on the Table 2.2 , the p-value shows that the homogeneity of the variance is not
respected.

Normality

The Figure 2.18 shows the quantiles of the residuals plotted against the quantiles of the nor-
mal distribution. If our distribution would follow the normal one, all points would concentrate
in the secondary diagonal line.

Figure 2.18 – Q-Q Plot of Normal Distributions over CPU Temperature Distributions

Then, looking to the Figure 2.18 we can conclude that the residuals are not normally dis-
tributed, then the analysed distribution does not follow the normal one, as well.

In addition, we used the Anderson-Darling normality test, that is a computational method
to verify the normality of the data, which is presented in the Table 2.3.

Table 2.3 – Anderson-Darling normality test

A p-value
4705.4 « 2.2e-16 ***

—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

And based on the Table 2.3, the resulted p-value means that the normality of the distribu-
tions is not respected.

2.2.3 Kruskal-Wallis rank sum test

Although the two ANOVA requirements are not respected, we computed the same steps
again using the Kruskal-Wallis Test, which is presented in the Table 2.4.

Table 2.4 – Kruskal-Wallis Rank sum Test

chi-squared df p-value
23804 14 « 2.2e-16

Then, from the Table 2.4, the resulted p-value < 0.05 means that there is significant differ-
ences among the QRADS, the same as the ANOVA did, but now we have the guaranties of the
correct treatment of our data.

2.2.4 Pairwise T-Test

We performed the Pairwise T-Test to verify if there is a significant difference among the
groups analysed by the Kruskal-Wallis, which is presented in the Table 2.5.

78

Table 2.5 – Pairwise comparisons using T-Test for the CPU temperatures, p: p-values < 0.05

Q00 Q01 Q02 Q03 Q04 Q05 Q06 Q07
Q01 p - - - - - - -
Q02 p p - - - - - -
Q03 p p p - - - - -
Q04 p 0,20 p p - - - -
Q05 p p p p p - - -
Q06 p p p p p p - -
Q07 p p p p p p p -
Q08 p p p p p p p p
Q09 0,48 0,87 0,83 0,51 0,88 0,15 0,76 0,99
Q10 p p p p p p 0,08 p
Q11 p 0,06 0,05 0,67 0,07 0,50 p 0,12
Q12 p p p p p p p p
Q13 p p p p p p p p
Q14 p p p p p p p p
Q15 p p p p p p 0,87 p

Q08 Q09 Q10 Q11 Q12 Q13 Q14
Q01 - - - - - - -
Q02 - - - - - - -
Q03 - - - - - - -
Q04 - - - - - - -
Q05 - - - - - - -
Q06 - - - - - - -
Q07 - - - - - - -
Q08 - - - - - - -
Q09 p - - - - - -
Q10 p 0,67 - - - - -
Q11 p 0,43 - - - - -
Q12 p 0,35 p p - - -
Q13 p 0,05 p 0,11 p - -
Q14 p 0,91 p 0,17 p p -
Q15 p 0,76 0,10 p p p p

Based on the Table 2.5, we were able to verify which QRAD can be taken as different and
which one can not, compared with the others.

2.2.5 Categorization

We performed the first categorization step and the Table 2.6 shows the resulted groups for
the CPU temperature in the first range.

Table 2.6 – QRADs grouped based on the CPU Temperature - Step 1

Groups Components
Group 1 Q10, Q09, Q06, Q15
Group 2 Q11, Q09, Q14
Group 3 Q11, Q09, Q13
Group 4 Q09, Q12
Group 5 Q09, Q07, Q05, Q04, Q03, Q01, Q11
Group 6 Q09, Q06, Q10
Group 7 Q07, Q06, Q05, Q04, Q03, Q02, Q01, Q00, Q09
Group 8 Q02, Q00

Merge groups of the same type of temperatures

Since we found conflicts of elements (QRADs) among the groups in the Table 2.6 we
needed to decide in each one this QRAD or QRADs should continue in. This way, we used
the Algorithm 8 to decide in which group the QRAD contributes more to increase their homo-
geneity coefficient. Then, we reduced the groups from the Table 2.6 to the Table 2.7 presented
below.

Table 2.7 – QRADs grouped based on the CPU Temperature - Step 2

Groups Components
Group 1 Q09, Q07, Q05, Q04, Q03, Q01, Q11
Group 2 Q10, Q06, Q15
Group 3 Q02, Q00

And so on, performing the same steps for all type of temperatures we will get the following
four other groups:

Table 2.8 – QRADs grouped based on the Ambient Temperature - Step 2

Groups Composition
Group 1 Q13, Q15
Group 2 Q09, Q11

Table 2.9 – QRADs grouped based on the Target Temperature - Step 2

Groups Composition
Group 1 Q07, Q05, Q13
Gtoup 2 Q00, Q09

Table 2.10 – QRADs grouped based on the Motherboard Temperature - Step 2

Groups Composition
Group 1 Q09, Q07, Q06, Q05, Q04, Q02, Q01, Q00, Q10
Group 2 Q11, Q15

80

Table 2.11 – QRADs grouped based on the Heatsink Temperature - Step 2

Groups Composition
Group 1 Q10, Q14
Group 2 Q09, Q11

Then, we have on these five tables, 2.7, 2.8, 2.9, 2.10 and 2.11 the categorization for each
type of temperature.

Merge groups from different types of temperature

Grouping the five sets of groups presented in 2.7, 2.8, 2.9, 2.10 and 2.11 we computed the
final groups, for each range of temperatures, presented in the Table 2.12, as follows:

Table 2.12 – QRADs grouped based on the Temperatures in the first range

Groups Composition
Group 1 Q13, Q15
Group 2 Q09, Q07, Q03, Q01, Q11
Group 3 Q06, Q05, Q04, Q02, Q00, Q10

Then, we can attribute the following characteristics, for each group from the Table 2.12:

• Group 1: The QRADs with the Ambient Temperature concentrated in the 22.5º C with
few variation,

• Group 2: The QRADs with similar Ambient, CPU, Motherboard and Heatsink at the
same time,

• Group 3: The QRADs with similar CPU and Motherboard, which both vary from 30º to
35º C.

And repeating the same process for the other ranges, we got the groups presented in Table 2.13
and Table 2.14.

Table 2.13 – QRADs grouped based on all temperatures in the second range

Groups Composition
Group 1 Q10, Q14
Group 2 Q09, Q08 Q11

Then, we can attribute the following characteristics, for each group from the Table 2.13:

• Group 1: The QRADs with similar Heatsink temperature, varying from 47.5º to 52.5º C,

• Group 2: The QRADs with similar CPU and Motherboard Temperatures varying from
50º to 60ºC, and Heatsink Temperatures, which varying from 50 to 55ºC.

Table 2.14 – QRADs grouped based on all temperatures in the third range

Groups Composition
Group 1 Q03, Q12
Group 2 Q08, Q10
Group 3 Q01, Q04
Group 4 Q02, Q11

And we can attribute the following characteristics, for each group from the Table 2.14:

• Group 1: The QRADs with similar CPU Temperatures, from 60º to 75º C with high
variation,

• Group 2: The QRADs with similar Motherboard Temperatures, varying from 68º to 70º
C,

• Group 3: The QRADs with similar CPU Temperatures, varying from 65º to 75º C with
median about 67ºC,

• Group 4: The QRADs with similar Motherboard Temperatures, varying from 67.5º to
72.5º C.

In other words, the last three tables: Table 2.12, Table 2.13 and Table 2.14 represent a
possible categorization based on all types of temperature, for each range defined.

82

3
Conclusions and Future Work

In this chapter we performed a first step towards understanding the temperature character-
istics of the smart heaters of Qarnot Computing. We analyzed the logs of sixteen smart heaters
and a first observation is the large number of noisy/measurement errors data present in the logs.
This can indicate that the measurement system of the smart heaters needs to be improved in
order to give more accurate data.

It was noticed the importance to investigate the Qarnot’s data behavior splitting the data in
ranges of temperatures, to compare their Smart Heaters during different periods, which means
during the process to deliver different range of temperatures. With that, we saw that there are
some QRADs which has its target temperature almost constant, but the other types of temperat-
ures varies a lot, even with this fact. We assumed that the variation was because the reallocation
of jobs to the machines over the time. But, there are other possibilities that should be investig-
ated, for example, looking to this variations during the execution of the same job. Looking to
the different ranges we also saw that the heatsink temperature is present in the second range,
above 35º C, even if there is no targeted or ambient temperature on that range. It indicates that
even if the heatsink is over than 35º C, when the air is spread in the ambient temperature, it
does not changes so much. Then, because of these and other observations pointed during the
text we believe that to split the distributions among ranges was a good approach. For further
works we believe that is possible to investigate the relation of the temperatures when increasing
and decreasing, in order to see how each component gets warm whenever the other ones are
also doing it.

We also performed a grouping of the temperature characteristics of the smart theaters.
These categories may facilitate conceiving temperature models for the smart heaters, since it
would be possible to create models for the categories and not for each smart heater individually.
For future work, we will include other measurements in our analysis, notably data regarding the
power consumed and we will also move towards creating temperature models of these smart
heaters. From the final groups for each range of temperature we noticed that in the first range
it was possible to group more QRADs thant in the other ranges. We consider that is because of
what this range represents, in other words, the first range includes the temperatures under 35º
C which in terms of computation can mean that the QRAD was not running anything at during
that time, then its easier to caracterize the machines as similar. We believe that future steps
that could improve the categorization process can be (i) the outliers removal, (ii) the merge of
groups containing the same QRADs instead of decides in which one the QRAD should belongs
to.

Part IV

General Conclusions

1
General Remarks and Acquired Knowledge

This work was done in two parts, focusing in two individual topics, at first, but since they
belong to the same context, they can be merged and took as two steps among an the same en-
vironment, an Edge platform simulation and its data analysis. Many challenges are involved in
this context, and in particular, in this work. It was presented for each part a focused conclusion
and some future remarks, as Chapter 5 for Part II and Chapter 3 for Part III. In this chapter
we present general discussions, thinking about the global view of this work, and the acquired
knowledge as well.

1.1 Simulated Platforms

One of the main gaols of this work, presented in Part II was the development of the simu-
lated platform, which was already in progress, but this work contributed to its conclusion. For
that it was necessary the understoodthe simulators SimGird and Batsim. These both simulators,
one built on the top of the other, allow researchers to implement schedulers and simulations for
general Edge Platforms, developing each component separately, step by step. In addition, it is
possible to get many types of outputs and follow the simulations logs, which is very useful to
the validation of the desired platform and the general analysis. Its important to emphasize here
the importance of such tool, once that it allow researchers and companies to implement accurate
simulations to then study modifications without putting in risk their production systems.

1.2 Edge Platforms

It is very interesting and challenging the behavior that such platforms have been developed
and growth, also it is challenging the necessity of multiple computations by machines far from
centralized servers, at the same time with its machine/ devices own behaviors with levels of
autonomous intelligence, such as smart phones, smart watches, smart heaters in our context,
and so on. Then, it is important to study how jobs and data sets are allocated and transmitted
among the network. It is also important to know that the components on Edge Platforms are
intermittent and if by one side they have got smart and capable to perform their own computa-
tions, by the other side they are limited when referred to disk, processor, memory, battery and
mainly dependent of connection with a internet network. Then, this context are followed by
such high heterogeneity and has growth in this terms and many others discussed in Chapter 2.

1.3 Job Allocation
Scheduling or job allocation is a very important process among the management of jobs,

data sets and resources because it impacts directly in many other things as computation per-
formances and energy/ power consumption. When referred about HPC and Cloud jobs its know
many techniques and algorithms already well validated and improved, but when it is inside the
context of Edge Computing we find many challenges, as multiple layers of network infrastruc-
ture or many process decisions nodes, whose need to be aligned and under communication as
much as possible. One possibility is to use one of those known algorithms, with combinations
and modifications regarding the heterogeneities and novelties of the Edge Platforms.

1.4 Scheduling Metrics
In order to evaluate the performance and the differences among the different types of job

allocation policies, there are different metrics. For example, the waiting time, to analyse if the
scheduler is improving the time that the jobs wait to be executed since they were received into
the system. Another example is the bounded slowdown, which verifies if the jobs waiting time
are proportional with its sizes. In addition to the heterogeneity and the non default strucutre of
the Edge platforms, these metric should be also adapted.

1.5 Data analysis
In order to investigate some data frame its is important to follow some basics steps to

do not get wrong or biased conclusions. An very important step is to know the data frame, it
characteristics, the information provided there, how the measurements were done, how accurate
is the sensors or the mechanisms which measured the data available. After, it is very import to
recognise and remove the measurement errors. In general, all the data analysis process is very
delicate in each step or decision, which should be done very carefully and argued.

Even when performing the analysis of the results from the simulated platform, or when per-
forming the descriptive analysis of the Qarnot Computing logs, it was possible to acquire skills
such data investigation, which follow skills to determine/ create workflows and to ask questions
that could direct a remaining research. Of course, all of those should be followed by constant
questions about the veracity and accuracy of the data, which helps in the development of skill
as research, comparison, and adjustment of different methodologies to achieve a common goal.
Such skills allowed us to based on an analysis of variance, develop a methodology to categorize
the Smart Heaters based on their temperature distributions, which follows an algorithm created
during this work.

1.6 The Qarnot Computing Use Case
When applied all the concepts described above in an use case, it is also necessary to under-

stand this use case, its particularities, behaviors, objectives, necessities and environment. The
Qarnot Computing as a company that run HPC/ Cloud jobs in machines which works as Smart
Heaters, innovated, when did these tasks managing the machines’ and the environment. For
that they found many challenges and one of the highest is the translation of heat requirements

88

in amount of jobs that should be ran into the machines. How it is possible to know the size of
the job that should be scheduled to some machine, based on the heat required by a home/ smart
heater user? They also have other challenges based on the accuracy of the temperature and how
to maintain that, since they do not control the final user. This one could turn on its machine
and require a high temperature which will turn the scheduling to pay attention in there, and
then, the user could just turn off the machine, because he changed mind.Then, the temperature
delivered were not the required one, which will be part of the logs and will be difficult, in the
future, to identify why does the required temperature was not achieved. It will also affect the
scheduler, that once dispatched a job, will need to manage it again.

We investigated if the temperatures’ distributions make sense among each other, which
means, if the different components that get warm inside the machines, affect each other. We
tried to search into the logs, the presence of an expected behavior, and to understand the not ex-
pected ones. By one side we achieved some possible conclusions remarked on this manuscript,
but by the other, we analysed just 16 machines among 300 other, which compose the Qarnot
platform.

A further step of the work group is to build a model of temperature based on its logs in
other to estimate the amount of jobs needed based on the temperature required. Then, it is
intended to use this model inside the simulator, to go one step further in the validation of the
simulated platform, which is still ongoing because of these challenges: the simulator has as
power consumption estimator, but not a temperature one, properly. And since the simulator
receives just the information extracted from the Qarnot Platform, which does not include their
users’ behaviors, as doors or windows opening and closing, it is not possible to compare the ex-
actly temperature estimated in the simulator and the logs ones. What is possible to do with the
simulator, as a very good characteristic, is the implementation and simulation of jobs alloca-
tions policies, which can be very useful to researchers or companies, as the Qarnot Computing,
interested in the field.

1.7 Tools and Programming Language
What allowed us to do everything that was presented, to work on the development of the

simulated Edge Platform and all the other analysis, was the utilization of different type of tools
or programming languages, for each one of the different goals and steps present in this work.
The simulated Edge platform was built on top of other two simulators, the Batsim and the
Simgrid. Even if we did not develop anything directly in the Simgrid, we used the Batsim,
and for that we needed to understand how does the Batsim communicates with the Simgrid, to
debug and follow the logs. For the usage of the Batsim and PyBatsim we used the programming
language Python. To mange its results we also utilized this programming language, but to
manage all the graphics and statistics based on them we used the R Language. But, before
getting any full script in R, we developed its functions, step by step using the Jupyter Notebook,
a personalized notebook which allows the usage of Python, R and Julia languages. Since we
needed to automatize the execution of the simulations, the manipulations of its results, the
statistical and descriptive analysis, we developed scripts on Linux Bash. Then, these scripts ran
the whole environment utilizing the other scripts in Python and R.

To perform the descriptive data analysis part, we utilized mainly the R language and the
Jupyter Notebook, which the goals to investigated in very well split steps, the Qarnot Comput-
ing’s logs.

1.8 Scientific Research
Even if the first part of this work was very practical, it demanded from us the study of the

state of the art of its context, Edge Computing, and its contributions looks like good to the
field, since the simulator can be used and has been developed with the goal of helps researchers
to investigate job allocation policies in simulated Edge Platforms. This work also presents
an use case very exciting because of its novelty, which can also be considered as scientific
contribution.

Looking by the side of the reproducibility, this work aimed to helped with a free license
tool, the simulator based on Batsim/ Simgrid, and all scripts and methodology utilized so far are
available on git based repositories, with some examples of input data. For reasons of privacy,
it was not possible to keep available the full input data from the Qarnot Computing to protect
its users and the licenses which the company is based.

All of were presented in the full manuscript, also pointed in the Chapter 1 should be un-
derstood as acquired knowledge, but in addition, in this chapter we point some other topics,
not necessary about the content which was presented, but more about the skills, techniques and
general knowledge learned so far.

90

Bibliography

[1] Qarnot computing. https://www.qarnot.com.

[2] Simgrid publications. http://simgrid.gforge.inria.fr/publications.html.

[3] A. Ahmed and E. Ahmed. A survey on mobile edge computing. In 2016 10th Interna-
tional Conference on Intelligent Systems and Control (ISCO), pages 1–8, Jan 2016.

[4] Kento Aida. Effect of job size characteristics on job scheduling performance. In Dror G.
Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing,
pages 1–17, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[5] Farah Ait Salaht, Frédéric Desprez, Adrien Lebre, Charles Prud’Homme, and Mohamed
Abderrahim. Service Placement in Fog Computing Using Constraint Programming. In
SCC 2019 - IEEE International Conference on Services Computing, pages 1–9, Milan,
Italy, July 2019. IEEE.

[6] Bill Allcock, Joe Bester, John Bresnahan, Ann L Chervenak, Ian Foster, Carl Kesselman,
Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven Tuecke. Data management
and transfer in high-performance computational grid environments. Parallel Computing,
28(5):749–771, 2002.

[7] David P Anderson. Boinc: A system for public-resource computing and storage. In
proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pages
4–10. IEEE Computer Society, 2004.

[8] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.
Computer networks, 54(15):2787–2805, 2010.

[9] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo Madeira,
Marilia Curado, Leandro Villas, Luiz DaSilva, Craig Lee, and Omer Rana. The internet of
things, fog and cloud continuum: Integration and challenges. Internet of Things, 3-4:134
– 155, 2018.

[10] Flavio Bonomi, Rodolfo A. Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and
its role in the internet of things. In Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, MCC@SIGCOMM 2012, Helsinki, Finland, August 17, 2012,
pages 13–16, 2012.

[11] A. Brogi and S. Forti. QoS-Aware Deployment of IoT Applications Through the Fog.
IEEE Internet of Things Journal, 4(5):1185–1192, Oct 2017.

[12] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric Suter.
Versatile, Scalable, and Accurate Simulation of Distributed Applications and Platforms.
Journal of Parallel and Distributed Computing, 74(10):2899–2917, June 2014.

[13] Bruno Donassolo, Ilhem Fajjari, Arnaud Legrand, and Panayotis Mertikopoulos. Fog
Based Framework for IoT Service Provisioning. In IEEE CCNC, January 2019.

[14] Pierre-François Dutot, Michael Mercier, Millian Poquet, and Olivier Richard. Batsim:
a Realistic Language-Independent Resources and Jobs Management Systems Simulator.
In 20th Workshop on Job Scheduling Strategies for Parallel Processing, Chicago, United
States, May 2016.

[15] A. Essafi, D. Trystram, and Z. Zaidi. An efficient algorithm for scheduling jobs in volun-
teer computing platforms. In 2014 IEEE International Parallel Distributed Processing
Symposium Workshops, pages 68–76, May 2014.

[16] Dror G. Feitelson. Metrics for parallel job scheduling and their convergence. In Dror G.
Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing,
pages 188–205, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[17] Harshit Gupta, Amir Vahid Dastjerdi, Soumya Ghosh, and Rajkumar Buyya. ifogsim:
A toolkit for modeling and simulation of resource management techniques in internet of
things, edge and fog computing environments. Software: Practice and Experience, 06
2016.

[18] F. C. Heinrich, T. Cornebize, A. Degomme, A. Legrand, A. Carpen-Amarie, S. Hunold,
A. Orgerie, and M. Quinson. Predicting the energy-consumption of mpi applications
at scale using only a single node. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pages 92–102, Sep. 2017.

[19] Lu Huang, Hai-shan Chen, and Ting-ting Hu. Survey on resource allocation policy and
job scheduling algorithms of cloud computing1. Journal of Software, 8, 02 2013.

[20] Hameed Hussain, Saif Ur Rehman Malik, Abdul Hameed, Samee Ullah Khan, Gage
Bickler, Nasro Min-Allah, Muhammad Bilal Qureshi, Limin Zhang, Wang Yongji, Nasir
Ghani, Joanna Kolodziej, Albert Y. Zomaya, Cheng-Zhong Xu, Pavan Balaji, Abhinav
Vishnu, Fredric Pinel, Johnatan E. Pecero, Dzmitry Kliazovich, Pascal Bouvry, Hongxi-
ang Li, Lizhe Wang, Dan Chen, and Ammar Rayes. A survey on resource allocation in
high performance distributed computing systems. Parallel Computing, 39(11):709 – 736,
2013.

[21] A. Lebre, J. Pastor, A. Simonet, and M. Südholt. Putting the next 500 vm placement
algorithms to the acid test: The infrastructure provider viewpoint. IEEE Transactions on
Parallel and Distributed Systems, 30(1):204–217, Jan 2019.

[22] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. A survey on mobile edge
computing: The communication perspective. IEEE Communications Surveys Tutorials,
19(4):2322–2358, Fourthquarter 2017.

92

[23] Ruben Mayer, Leon Graser, Harshit Gupta, Enrique Saurez, and Umakishore
Ramachandran. Emufog: Extensible and scalable emulation of large-scale fog computing
infrastructures. In FWC, pages 1–6. IEEE, 2017.

[24] Jie Meng, Samuel McCauley, Fulya Kaplan, Vitus J. Leung, and Ayse K. Coskun. Sim-
ulation and optimization of hpc job allocation for jointly reducing communication and
cooling costs. Sustainable Computing: Informatics and Systems, 6:48 – 57, 2015. Special
Issue on Selected Papers from 2013 International Green Computing Conference (IGCC).

[25] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck, and
Raouf Boutaba. Network function virtualization: State-of-the-art and research challenges.
IEEE Communications Surveys & Tutorials, 18(1):236–262, 2015.

[26] Mohammed Islam Naas, Philippe Raipin Parvedy, Jalil Boukhobza, and Laurent
Lemarchand. iFogStor: An IoT Data Placement Strategy for Fog Infrastructure. In IC-
FEC’17, pages 97–104, 2017.

[27] Y. Ngoko, N. Saintherant, C. Cerin, and D. Trystram. Invited paper: How future buildings
could redefine distributed computing. In 2018 IEEE International Parallel and Distrib-
uted Processing Symposium Workshops (IPDPSW), pages 1232–1240, May 2018.

[28] C. Pahl and B. Lee. Containers and clusters for edge cloud architectures – a technology
review. In 2015 3rd International Conference on Future Internet of Things and Cloud,
pages 379–386, Aug 2015.

[29] S. M. Parikh. A survey on cloud computing resource allocation techniques. In 2013
Nirma University International Conference on Engineering (NUiCONE), pages 1–5, Nov
2013.

[30] Millian Poquet. Simulation approach for resource management. (Approche par la sim-
ulation pour la gestion de ressources). PhD thesis, Grenoble Alpes University, France,
2017.

[31] Muhammad Bilal Qureshi, Maryam Mehri Dehnavi, Nasro Min-Allah,
Muhammad Shuaib Qureshi, Hameed Hussain, Ilias Rentifis, Nikos Tziritas, Thanasis
Loukopoulos, Samee U. Khan, Cheng-Zhong Xu, and Albert Y. Zomaya. Survey on grid
resource allocation mechanisms. Journal of Grid Computing, 12(2):399–441, Jun 2014.

[32] M. Randles, D. Lamb, and A. Taleb-Bendiab. A comparative study into distributed load
balancing algorithms for cloud computing. In 2010 IEEE 24th International Conference
on Advanced Information Networking and Applications Workshops, pages 551–556, April
2010.

[33] A. S. M. Rizvi, T. R. Toha, M. M. R. Lunar, M. A. Adnan, and A. B. M. A. A. Islam.
Cooling energy integration in simgrid. In 2017 International Conference on Networking,
Systems and Security (NSysS), pages 132–137, Jan 2017.

[34] M. Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–39, Jan
2017.

[35] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5):637–646, Oct 2016.

[36] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5):637–646, Oct 2016.

[37] W. Shi and S. Dustdar. The promise of edge computing. Computer, 49(5):78–81, May
2016.

[38] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp Leitner.
Optimized IoT Service Placement in the Fog. SOC, 11(4):427–443, Dec 2017.

[39] C. Sonmez, A. Ozgovde, and C. Ersoy. Edgecloudsim: An environment for performance
evaluation of edge computing systems. In 2017 Second International Conference on Fog
and Mobile Edge Computing (FMEC), pages 39–44, May 2017.

[40] Ye Xia, Xavier Etchevers, Loïc Letondeur, Thierry Coupaye, and Frédéric Desprez. Com-
bining Hardware Nodes and Software Components Ordering-based Heuristics for Optim-
izing the Placement of Distributed IoT Applications in the Fog. In Proc. of the ACM SAC,
pages 751–760, 2018.

[41] Ashkan Yousefpour, Ashish Patil, Genya Ishigaki, Jason P. Jue, Inwoong Kim, Xi Wang,
Hakki C. Cankaya, Qiong Zhang, and Weisheng Xie. QoS-aware Dynamic Fog Service
Provisioning. 2017.

[42] Xuezhi Zeng, Saurabh Kumar Garg, Peter Strazdins, Prem Prakash Jayaraman, Dimitrios
Georgakopoulos, and Rajiv Ranjan. Iotsim. J. Syst. Archit., 72(C):93–107, January 2017.

[43] Ben Zhang, Nitesh Mor, John Kolb, Douglas Chan, Ken Lutz, Eric Allman, John
Wawrzynek, Edward Lee, and John Kubiatowicz. The Cloud is Not Enough: Saving
IoT from the Cloud. In HotStorage, 2015.

94

